
0

.

Parallel Scientific Computing
Course AMS301 — Fall 2023 — Lecture 1

Context, motivation and generalities
Parallel architectures, algorithms and programming

Axel Modave

Context, motivation and generalities

Parallel architectures and algorithms

Parallel programming with MPI in C++

Parallel computing — Context and motivation [1/2]

We consider large-scale problems that are difficult or even impossible
to solve with standard computers . . .
▶ because the computation time is too long,
▶ because the amount of data to be stored is too large.

Examples of large-scale problems

Weather forecast Simulation R&D Simulation of
(Picture Météo France) Aeronautic industry earthquake

(Picture Siemens Indus. Soft.) (Picture SPECFEM3D)

1

Parallel computing — Context and motivation [2/2]

Parallel computing allows for . . .
▶ using more computing power −→ Decreasing the computation time
▶ using more memory space −→ Processing a larger amount of data

Examples of parallel computers

2

Standard supercomputer
– Composed of several nodes
– Each node: processor(s) + RAM (Random Memory Access)
– Nodes connected with an internal network

Cluster of standard computers
– Composed of several machines
– Each machine: processor(s) + RAM
– Machines connected with a standard

network (e.g. Ethernet/Wi-Fi)

Parallel computing — What is different? [1/3]

Using a parallel machine is more complicated than using a standard computer.

A parallel machine is composed of . . .
▶ several nodes (each of them with dedicated computing/memory resources),
▶ an interconnection network.

To run a program on these machines, we have to specify . . .
▶ The resources to be used (How many nodes? Which nodes?);
▶ The distribution of operations and data on the nodes;
▶ How to manage dependencies between the operations?

3

Parallelarchitectures

Illustration of
a standard supercomputer Illustration of a cluster

of standard computers

Parallel computing — What is different? [2/3]

To control the parallel execution of a program, we have to:
▶ modify the code (additional variables and functions),
▶ use a “parallel” compiler (or a standard compiler with a parallel library),
▶ add options at the execution.

The MPI library (Message Passing Interface) gives the functions required to manage
data transfers between MPI processes (“from one node to another one”).

Example of MPI functions in C++ to send an integer from one process to another one:
MPI Send(&value, 1, MPI INT, idTo, 0, MPI COMM WORLD)

MPI Recv(&value, 1, MPI INT, idFrom, 0, MPI COMM WORLD, status)

To compile, we use the “parallel version” of standard compilers:

gcc −→ mpicc

g++ −→ mpicxx

To execute, we use the command mpirun to give the execution options.

4

Parallelprogramming

Parallel computing — What is different? [3/3]

▶ For the parallel numerical solution of scientific problems,
the codes must be parallelized (i.e. parallel treatment of operations/data).

▶ In order to really leverage the computational power of the parallel machines,
we have to rethink the numerical methods for parallel computing
to take into account the characteristics of the parallel architectures.

Design of a numerical simulation tool

5

Parallelalgorithms

Parallel computing — Example of a parallel numerical method

Finite element solution with a domain decomposition method (DDM)

Find u ∈ H1(Ω) s.t. (∇u,∇v)Ω − (k2u, v)Ω + ⟨ıku, v⟩∂Ω = (f, v)Ω, ∀v ∈ H1(Ω)

6

Source: Boubendir, Antoine,
Geuzaine [2012]

I.

II.

III.
IV. V.

Small linear system to solve[
· ·
· ·

][
x
x

]
=

[
·
·

]
for each subdomain

Data transfers at the interfaces

Decomposition of the initial problem
into subproblems solved in parallel

in an iterative process

Standard direct/iterative procedure:

Large system to solve;
Parallel strategies not efficient
or slow convergence

Procedure with DDM:

For each Ωi, find ui ∈ H1(Ωi) s.t. (∇ui,∇vi)Ωi
− (k2ui, vi)Ωi

+
∑

interfaces ??? · · ·

AMS301 course [1/3]

Goals of
AMS301

Taking into account the parallel aspects in the design and

the implementation of numerical methods for efficient simulations
Numerical and algorithmic aspects of parallel computing

Course proposed in the following programs:
▶ 3A ”Modélisation et simulation” (parcours ModSim) at ENSTA Paris
▶ 3A ”Mathématiques pour la santé et l’environnement” at ENSTA Paris
▶ M2 ”Mathématiques et Applications” (parcours AMS) at IP Paris and UPSay
▶ M2 ”Informatique” (parcours HPDA) at IP Paris

Other courses of 3A ModSim and M2 AMS:
▶ Focused on programming aspects:

• AMS-O12 – Cours accéléré de programmation (Bloc 0)
https://pmarchand.pages.math.cnrs.fr/slides/courses/master AMS O12/

• AMS-I03 – Programmation hybride et multi-cœurs (Bloc 2)
https://perso.ensta-paris.fr/~tajchman/

▶ Focused on numerical aspects:
• AMS-X02 – Méthodes num. avancées et calcul haute performance (Bloc 2)

7

https://pmarchand.pages.math.cnrs.fr/slides/courses/master_AMS_O12/
https://perso.ensta-paris.fr/~tajchman/

AMS301 course [2/3]

Goals of
AMS301

Taking into account the parallel aspects in the design and

the implementation of numerical methods for efficient simulations
Numerical and algorithmic aspects of parallel computing

Content (approx. 1h lecture and 2h exercices per session)

▶ Paradigms and fundamentals of parallel scientific computing
▶ Parallel solution of linear algebraic systems
▶ Parallel solution of partial differential problems (with finite differences/elements)
▶ Parallel programming with MPI in C++

Prerequisite knowledge and skills

▶ Basic knowledge on num. linear algebra and num. methods for PDE problems
▶ Basic knowledge on the UNIX environment and the C++ language

https://ams301.pages.math.cnrs.fr/

8

https://ams301.pages.math.cnrs.fr/

AMS301 course [3/3]

Evaluation No written exam!

▶ Two programming project (evaluation based on written reports and C++ codes)
▶ Oral presentation for the second project, with questions related to the lectures

Axel Modave
Chargé de recherche CNRS
UMA / ENSTA Paris
Office 22.29

Nicolas Kielbasiewicz
Ingénieur de recherche CNRS
UMA / ENSTA Paris
Office 22.16

https://ams301.pages.math.cnrs.fr/

9

https://ams301.pages.math.cnrs.fr/

Context, motivation and generalities

Parallel architectures and algorithms

Parallel programming with MPI in C++

Architectures — Standard computer [1/3]

Working stations at ENSTA Paris

10

Architectures — Standard computer [2/3]

Standard computers are composed of . . .
▶ processing units:

• one processor (CPU — Central Processing Unit)
• one graphic card (GPU — Graphical Processing Unit)

▶ memory units:
• fast memory (RAM — Random Access Memory) 7.75 GB
• one hard drive (HDD — Hard Disk Drive) ∼ 1 TB

▶ connections for data transfers:
• between HDD and RAM
• between RAM and the “cache” memory of processing units

Intel Core i5 processor
Real size: 3.75cm x 3.75cm RAM

11

Architectures — Standard computer [3/3]

Performance of working stations at ENSTA Paris

Cores Frequency Arithmetic throughput
CPU : Intel(R) Core(TM) i5-4430 4 3.0 GHz ∼ 15 GFLOP/s (double precision?)
GPU : ATI Mobility Radeon HD 5430 80 675 MHz ∼ 80 GFLOP/s (single precision)

Memory size
Fast memory (RAM) 7.75 GB
Hard drive (HDD) ∼ 1 TB

Memory bandwidth
PCI express ∼ 10 GB/s

Warning: These numbers are approximate,
but the orders should be correct.

103 kilo (k) 1012 tera (T)
106 mega (M) 1015 peta (P)
109 giga (G) 1018 exa (E)

12

Arithmetic throughput ≈ ”Rate of computing”

FLOP = Floating-Point Operation

Memory size
byte (B) = 8 bits (bit = binary digit)

Storage of a float with single precision = 4 bytes
Storage of a float with double precision = 8 bytes

Memory bandwidth ≈ ”Rate of data transfer”

Architectures — Standard supercomputer [1/3]

General view Front Back

Cluster Cholesky — IDCS mesocentre — IP Paris

http://meso-ipp.gitlab.labos.polytechnique.fr/user_doc/

13

http://meso-ipp.gitlab.labos.polytechnique.fr/user_doc/

Architectures — Standard supercomputer [2/3]

The cluster Cholesky is composed of ...
▶ 2 login front-end nodes
▶ processing units:

• 68 “CPU nodes” with 2 CPUs
• 4 “GPU nodes” with 2 CPUs and 4 GPUs

▶ memory units:
• one fast memory (RAM) on each node (private) 160 to 384 GB/node
• one parallel file system (shared) 385 TB

▶ connections for data transfers:
• between RAM and the “cache” memory of processing units on each node
• between nodes (RAM) and file system (interconnection network)

http://meso-ipp.gitlab.labos.polytechnique.fr/user_doc/

14

http://meso-ipp.gitlab.labos.polytechnique.fr/user_doc/

Architectures — Standard supercomputer [3/3]

Performance of cluster Cholesky

Cores Frequency Arithmetic throughput Quantity
CPU : Intel Xeon CPU Gold 6230 20 2.1 GHz ∼ 1 715 GFLOPS/s 144
GPU : Nvidia V100 5 120 ∼ 14 TFLOP/s 8
GPU : Nvidia A100 6 912 ∼ 19 TFLOP/s 8

Memory size Memory size
(one node) (32 nodes)

Fast memory (RAM) 160 to 384 GB ∼ 16 TB
Hard drive (HDD) 385 TB

Memory bandwidth
Transfers in the node (PCI express) ∼ 48 GB/s
Interconnection network (InfiniBand) 100 GB/s

Warning: These numbers are approximate,
but the orders should be correct.

103 kilo (k) 1012 tera (T)
106 mega (M) 1015 peta (P)
109 giga (G) 1018 exa (E)

15

Computational power ↗
∼ 0.5 PFLOP/s

Memory size ↗

Transfers between nodes

Architectures — World #3 supercomputer (June 1, 2021)

Cluster LUMI (EUROHPC/CSC, Kajaani, Finland)

Nodes: 1 536 CPU nodes + 2 560 GPU nodes
Processor: AMD EPYC 64C 2GHz (2 per CPUnode)
GPU: AMD MI250X GPUs (4 per GPU node)
Total peak performance: 214.35 PFLOP/s

https://www.lumi-supercomputer.eu/

16

https://www.top500.org/

https://www.lumi-supercomputer.eu/
https://www.top500.org/

Parallel algorithms

The design of parallel algorithms is more complicated
than the design of sequential algorithms.

▶ To design a sequential algorithm, we have to
– define a sequence of instructions to be process in a particular order

by a sequential machine.
... that’s it. :-)

▶ To design a parallel algorithm, we have to
– distribute the operations/data between the nodes of the parallel machine,

(each node has its own sequence of instructions and its own data)
– specify the data transfers between the nodes,
– specify the order of operations.

17

Parallel algorithms — Addition of two vectors z = x+ y

Sequential algorithm

for n = 0 · · · 99 do
zn = xn + yn

end

Parallel algorithm with 2 processes

Data: each process knows half of the entries of x and y.

On each process p = 0, 1 :
for n = (50 · p) · · · (50 · (p+ 1)− 1) do

zn = xn + yn

end

Result: each process knows half of the entries of z.

A process is a set of instructions, a memory space
and resources for in/out operations.

With the “divide and conquer” strategy, the problem is divided
into smaller problems that are distributed between the processes.

18

Parallel algorithms — Scalar product S = x · y

Sequential algorithm

for n = 0 · · · 99 do
S = S + xn · yn

end

Parallel algorithms with 2 processes

Data: each process knows half of the entries of x et y.

On each process p = 0, 1:
for n = (50 · p) · · · (50 · (p+ 1)− 1) do

S(p) = S(p) + xn · yn
end
Communication: process 1 sends S(1) to process 0.
On process 0: S = S(0) + S(1)

Result: process 0 knows S.

A synchronization is introduced by the communication.

19

Parallel algorithms that are far less basic

Some important fields:

1. Numerical linear algebra (with dense and sparse matrices)

Find x ∈ RN , such that Ax = b.

2. Problems with structured grids (ex. différence finies)

uℓ+1
i,j − uℓi,j

∆t
+
uℓi+1,j + uℓi−1,j + uℓi,j+1 + uℓi,j−1 − 4uℓi,j

∆x2
= 0

3. Problems with unstructured (ex. éléments finis)

Mij =

∫
Ω
ψi(x) ψj(x) dx Kij =

∫
Ω
∇ψi(x) · ∇ψj(x) dx

4. Spectal methods

FFT: f̂n =

N−1∑
m=0

fm e−2πımn/N (n = 0 . . . N − 1)

5. N−body problems, Monte Carlo methods, . . .
6. Algorithms on graphs (e.g. in operational research)

To be continued during AMS301 ...

20

Context, motivation and generalities

Parallel architectures and algorithms

Parallel programming with MPI in C++

MPI — Introduction [1/3]

The MPI standard

▶ MPI (“Message Passing Interface”) is an coding standard to program
applications and libraries for computing on parallel architectures:

• Supercomputers (with an internal network – e.g. Infiniband)
• Clusters of computers (with an external network – e.g. Ethernet/WIFI)
• Standard computers ... with one processor, one RAM and one hard drive

▶ MPI defines the syntax and semantics of library routines for writing portable
message-passing programs in C, C++, and Fortran.

▶ The MPI specifications are decided by a consortium, the MPI Forum, composed of
academics, laboratories and companies (Intel, Cray, ATOS, Microsoft ...).

https://www.mpi-forum.org/

History

Year Version Specifications
1991 Start of discussions for a new standard
1994 MPI 1.0 236 pages MPI 1.1 (1995), MPI 1.2 (2008)
1997 MPI 2.0 370 pages MPI 2.1 (2008), MPI 2.2 (2009)
2012 MPI 3.0 852 pages MPI 3.1 (2015)
2021 MPI 4.0 1139 pages

21

https://www.mpi-forum.org/

MPI — Introduction [2/3]

MPI libraries and installation

▶ Several implementations for Fortran and/or C/C++:
• OpenMPI (open source)
• MPICH (open source)
• ...

▶ Installation possible via depots:

• On Linux, using apt-get:

>> sudo apt-get install libopenmpi-dev (OpenMPI)
>> sudo apt-get install mpich (MPICH)

• On macOS, using macport:

>> sudo port install openmpi (OpenMPI)
>> sudo port install mpich (MPICH)

22

MPI — Introduction [3/3]

How to use MPI?

▶ Library with functions, constants and data types
The header of the C++ library must be included:

#include <mpi.h>

Functions allow for actions during the execution and/or they give informations:

MPI Init(&argc, &argv);

MPI Comm size(MPI COMM WORLD, &nbTask);

MPI Comm rank(MPI COMM WORLD, &myRank);

MPI Send(...);

MPI Recv(...);

MPI Finalize();

▶ Compilation with the MPI library
>> mpicxx myCode.cpp

This is the standard compiler (g++ here) with the options to include MPI.

▶ Environment for parallel execution
>> mpirun -np 4 a.out

mpirun is used to run the program in parallel, with options to give informations on
the parallel execution (e.g. number of parallel processes).

23

MPI — Example: Hello, World!

Code

1 #include <iostream >
2 #include <mpi.h>
3 using namespace std;
4

5 int main(int argc , char* argv [])
6 {
7 MPI_Init (&argc , &argv); // Initialize MPI
8 cout << "Hello , World!" << endl; // Every proc prints the message
9 MPI_Finalize (); // Finalize MPI

10 return 0;
11 }

Compilation and execution

1 >> mpicxx helloworld.cpp
2 >> mpirun -np 3 a.out
3 Hello , World!
4 Hello , World!
5 Hello , World!

The program must include:

– The header file mpi.h

– MPI Init(. . .) before the first call to a MPI
function

– MPI Finalize() after the last call to a MPI
function

The number of MPI processes is chosen at the
execution (here, 3). It cannot be modified.

24

MPI — Example: I Am Number Four

Code

1 #include <iostream >
2 #include <mpi.h>
3 using namespace std;
4

5 int main(int argc , char* argv [])
6 {
7 MPI_Init (&argc , &argv); // Initialize MPI
8 int nbTask;
9 int myRank;

10 MPI_Comm_size(MPI_COMM_WORLD , &nbTask); // Get total nb of proc
11 MPI_Comm_rank(MPI_COMM_WORLD , &myRank); // Get rank for each proc
12 cout << "I am task " << myRank << " out of " << nbTask << endl;
13 MPI_Finalize (); // Finalize MPI
14 return 0;
15 }

Compilation and execution

1 >> mpicxx numberfour.cpp
2 >> mpirun -np 4 a.out
3 I am task 2 out of 4
4 I am task 0 out of 4
5 I am task 3 out of 4
6 I am task 1 out of 4

MPI Comm size(. . .) and MPI Comm rank(. . .)
allow to get the total number of MPI processes,
and the rank of the current one (here, from 0 to 3).

The rank can be used to differentiate the work
to be performed by each MPI process.

⇐= The order of display cannot be predicted.

25

MPI — Point-to-point communication with MPI Send/MPI Recv [1/2]

The routines for point-to-point communications, MPI Send(. . .) and MPI Recv(. . .),
allow for the transfer of data from one given process to another one.

Example

1 if(myRank == 0)

2 MPI_Send(arraySend , 8, MPI_INT , 1, 666, MPI_COMM_WORLD);

3 if(myRank == 1)

4 MPI_Recv(arrayRecv , 8, MPI_INT , 0, 666, MPI_COMM_WORLD , MPI_STATUS_IGNORE);

In this example, an array of 8 integers is sent from process 0 to process 1.
The tag associated to the message is 666.

The functions are blocking: while the message is not totally received by process 1,
both processes (0 and 1) are blocked. ⇒ WARNING !!!

26

MPI — Point-to-point communication with MPI Send/MPI Recv [2/2]

The entries of the functions give informations on the data and the transfer:

int MPI Send(const void* buf, Pointer to data to send
int count, Size of the array to send
MPI Datatype datatype, Type of data to send
int dest, Rank of the process “destination”
int tag, Tag of the message
MPI Comm comm) Communicator

int MPI Recv(void* buf, Pointer to storage for received data
int count, Size of the array to receive
MPI Datatype datatype, Type of data to receive
int source, Rank of the process “source”
int tag, Tag of the message
MPI Comm comm, Communicator
MPI Status* status) Status of the communication

Data type: MPI INT (int), MPI FLOAT (float), MPI DOUBLE (double), ...

To transfer a message, the tag must be identical in the send and in the recv.
Any number can be use.

The communicator specify the group of MPI processes in which the comunication is
performed. During this course, only MPI COMM WORLD shall be used.

27

MPI — Example: Sending arrays and vectors

Sending a single double number:

1 double data = 3.14185;
2 MPI_Send (&data , 1, MPI_DOUBLE , 1, 666, MPI_COMM_WORLD);

Sending a static array of double numbers:

1 double data [5];
2 data [0] = 0.1; data [1] = 9.9; data [2] = 0; data [3] = 2; data [4] = 4;
3 MPI_Send(data , 5, MPI_DOUBLE , 1, 666, MPI_COMM_WORLD);

Sending a vector of double numbers:

1 vector <double > data (5);
2 data [0] = 0.1; data [1] = 9.9; data [2] = 0; data [3] = 2; data [4] = 4;
3 MPI_Send (&data[0], 5, MPI_DOUBLE , 1, 666, MPI_COMM_WORLD);

. . . or only the two last values . . .

1 vector <double > data (5);
2 data [0] = 0.1; data [1] = 9.9; data [2] = 0; data [3] = 2; data [4] = 4;
3 MPI_Send (&data[3], 2, MPI_DOUBLE , 1, 666, MPI_COMM_WORLD);

28

MPI — Example: Deadlock

The functions MPI Send and MPI Recv are blocking: while the message is not
completely received, both processes involved in the communication are blocked.

Version 1

1 if(myRank == 0){

2 MPI_Recv(b, 100, MPI_DOUBLE , 1, 39, MPI_COMM_WORLD , MPI_STATUS_IGNORE);

3 MPI_Send(a, 100, MPI_DOUBLE , 1, 17, MPI_COMM_WORLD);

4 }

5 if(myRank == 1){

6 MPI_Recv(b, 100, MPI_DOUBLE , 0, 17, MPI_COMM_WORLD , MPI_STATUS_IGNORE);

7 MPI_Send(a, 100, MPI_DOUBLE , 0, 39, MPI_COMM_WORLD);

8 }

Both processes are blocked in the “send” mode, mutually waiting themself.
The program is blocked. =⇒ Deadlock :-(

Version 2

1 if(myRank == 0){

2 MPI_Recv(b, 100, MPI_DOUBLE , 1, 39, MPI_COMM_WORLD , MPI_STATUS_IGNORE);

3 MPI_Send(a, 100, MPI_DOUBLE , 1, 17, MPI_COMM_WORLD);

4 }

5 if(myRank == 1){

6 MPI_Send(a, 100, MPI_DOUBLE , 0, 39, MPI_COMM_WORLD);

7 MPI_Recv(b, 100, MPI_DOUBLE , 0, 17, MPI_COMM_WORLD , MPI_STATUS_IGNORE);

8 }

Everything is alright. =⇒ Happy face :-)

29

MPI — Example: Addition of the N first integers

1 int main(int argc , char *argv []){

2 int myrank , np;

3 MPI_Init (&argc , &argv);

4 MPI_Comm_size(MPI_COMM_WORLD , &np);

5 MPI_Comm_rank(MPI_COMM_WORLD , &myrank);

6
7 int N = 1000;

8 int startval = N * myrank / np + 1

9 int endval = N * (myrank +1) / np

10 int partSum = 0;

11
12 for(int i=startval; i<= endval; i++)

13 partSum += i ;

14 cout << "Partial sum on proc " << myrank << " equals " << partSum << endl ;

15
16 if(myrank != 0)

17 MPI_Send (&partSum , 1, MPI_INT , 0, 23, MPI_COMM_WORLD) ;

18 else{

19 for(int j=1; j<np; j++) {

20 int tmp = 0;

21 MPI_Recv (&tmp , 1, MPI_INT , j, 23, MPI_COMM_WORLD , MPI_STATUS_IGNORE);

22 partSum += tmp ;

23 }

24 cout << "The sum from 1 to " << N << " is: " << partSum << endl;

25 }

26
27 MPI_Finalize ();

28 }

30

Summary

▶ Parallel architectures
• Processing units: CPU, GPU
• Memory units: HDD, RAM, “cache” memory
• Supercomputer – Compute node – Hybrid machine
• Interconnection network

▶ Parallel algorithms
• Distributed operations and data
• Process, task and data transfer
• “Divide and Conquer” strategy

▶ Basic MPI Commands
• MPI Init
• MPI Finalize
• MPI Comm size
• MPI Comm rank
• MPI Send
• MPI Recv

