Parallel Scientific Computing Course AMS301 - Fall 2023 — Lecture 3

Iterative methods for linear systems (1) Stationary methods \& Application to finite differences

Axel Modave

Solution procedures for linear systems - Generalities

$$
\text { Find } \mathbf{x} \in \mathbb{R}^{n} \text { such that } \mathbf{A x}=\mathbf{b} \text { with } \mathbf{A} \in \mathbb{R}^{n \times n} \text { and } \mathbf{b} \in \mathbb{R}^{n} \text {. }
$$

Motivation

Many computational procedures require the solution of linear systems:

- for linear physical problems,
- for non-linear physical problems,
- for optimization procedures,
- ...
for many applications:
- electromagnetic compatibility, aeroacoustic studies, CFD,
- medical imaging, geophysical imaging,
- ...

From a mathematical point of view:

- discretized elliptic problem
\Rightarrow linear system to solve!
- discretized hyperbolic problem with an implicit time stepping scheme
\Rightarrow linear system to solve at each time step!

Solution procedures for linear systems — Generalities [2/3]

$$
\text { Find } \mathbf{x} \in \mathbb{R}^{n} \text { such that } \mathbf{A x}=\mathbf{b} \text { with } \mathbf{A} \in \mathbb{R}^{n \times n} \text { and } \mathbf{b} \in \mathbb{R}^{n} \text {. }
$$

Solution procedures

- Direct methods: Factorization of \mathbf{A} into triangular and diagonal matrices (ex. $\mathbf{A}=\mathbf{L U}$) and solution of simpler problems.

$$
\mathbf{A x}=\mathbf{b} \quad \Leftrightarrow \quad \mathbf{L U x}=\mathbf{b} \quad \Leftrightarrow \quad \begin{array}{r}
\mathbf{L y}=\mathbf{b} \\
\mathbf{U x}=\mathbf{y}
\end{array}
$$

Advantages: exact solution known after a given number of operations Difficulties: heavy computational cost (operations/memory), hard to parallelize

- Iterative methods: Iterative procedure to minimizing an error $\left\|\mathbf{x}^{(\ell)}-\mathbf{x}_{\text {ref }}\right\|$ and/or a residual $\left\|\mathbf{A x} \mathbf{x}^{(\ell)}-\mathbf{b}\right\|$.

$$
\begin{aligned}
\mathbf{x}^{(0)} & =\operatorname{Iter}_{(0)}(\mathbf{A}, \mathbf{b}) \\
\mathbf{x}^{(\ell+1)} & =\operatorname{Iter}^{(\ell+1)}\left(\mathbf{x}^{(\ell)}, \mathbf{x}^{(\ell-1)}, \ldots, \mathbf{A}, \mathbf{b}\right), \quad \text { pour } \ell \geq 0
\end{aligned}
$$

Advantages: limited cost per iteration (operations/memory), easy to parallelize Difficulties: approximate solution, control of the convergence of the process

Solution procedures for linear systems - Generalities [3/3]

Find $\mathbf{x} \in \mathbb{R}^{n}$ such that $\mathbf{A x}=\mathbf{b}$ with $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^{n}$.

- Iterative methods:

$$
\begin{aligned}
\mathbf{x}^{(0)} & =\operatorname{Iter}_{(0)}(\mathbf{A}, \mathbf{b}) \\
\mathbf{x}^{(\ell+1)} & =\operatorname{Iter}^{(\ell+1)}\left(\mathbf{x}^{(\ell)}, \mathbf{x}^{(\ell-1)}, \ldots, \mathbf{A}, \mathbf{b}\right), \quad \text { pour } \ell \geq 0
\end{aligned}
$$

The order of the method is the numb. of steps which the current iter. depends on. Stationary method if the functions Iter ${ }^{(\ell)}$ are indep. of ℓ, otherwise nonstationary Linear method if the functions Iter ${ }^{(\ell)}$ are linear, otherwise nonlinear

Today, we consider stationary linear iterative schemes of first order:

$$
\begin{aligned}
& \mathbf{x}^{(0)} \text { given } \\
& \mathbf{x}^{(\ell+1)}=\mathbf{B} \mathbf{x}^{(\ell)}+\mathbf{f}, \quad \ell \geq 0
\end{aligned}
$$

where $\mathbf{B} \in \mathbb{R}^{n \times n}$ is the iteration matrix and $\mathbf{f} \in \mathbb{R}^{n}$ depends on \mathbf{b}.

Iterative methods for linear systems
Stationary methods
System arising from a finite difference discretization

Stationary methods — Generalities [1/2]

Find $\mathbf{x} \in \mathbb{R}^{n}$ such that $\mathbf{A x}=\mathbf{b}$ with $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^{n}$.

We consider a general procedure:

$$
\left\lvert\, \begin{aligned}
& \mathbf{x}^{(0)} \text { given } \\
& \mathbf{x}^{(\ell+1)}=\mathbf{B} \mathbf{x}^{(\ell)}+\mathbf{f}, \quad \ell \geq 0
\end{aligned}\right.
$$

where $\mathbf{B} \in \mathbb{R}^{n \times n}$ is the iteration matrix and $\mathbf{f} \in \mathbb{R}^{n}$ depends on \mathbf{b}.

Definitions and properties

- Consistent method if the solution is a fixed point of the scheme (i.e. $\mathbf{x}=\mathbf{B x}+\mathbf{f}$).

$$
\text { OK if and only if } \mathbf{f}=(\mathbf{I}-\mathbf{B}) \mathbf{A}^{-1} \mathbf{b}
$$

- Convergent method if $\lim _{\ell \rightarrow \infty} \mathbf{x}^{(\ell)}=\mathbf{x}$ for all $\mathbf{x}^{(0)}$.

For a consistent method, OK if and only if $\rho(\mathbf{B})<1$
The spectral radius $\rho(\mathbf{B})$ is the max. of the absolute values of the eigenval. of \mathbf{B}.

Stationary methods - Generalities [2/2]

Find $\mathbf{x} \in \mathbb{R}^{n}$ such that $\mathbf{A x}=\mathbf{b}$ with $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^{n}$.

We consider a general procedure:

$$
\begin{aligned}
& \mathbf{x}^{(0)} \text { given } \\
& \mathbf{x}^{(\ell+1)}=\mathbf{B} \mathbf{x}^{(\ell)}+\mathbf{f}, \quad \ell \geq 0
\end{aligned}
$$

where $\mathbf{B} \in \mathbb{R}^{n \times n}$ is the iteration matrix and $\mathbf{f} \in \mathbb{R}^{n}$ depends on \mathbf{b}.

Definitions and properties

- We use a stopping criteria on the number of iterations and the norm of the residual:

$$
\ell \leq \ell_{\mathrm{tol}} \quad \text { and } \quad\left\|\mathbf{r}^{(\ell)}\right\| /\left\|\mathbf{r}^{(0)}\right\| \leq \varepsilon_{\mathrm{tol}}
$$

with the residual vector $\mathbf{r}^{(\ell)}:=\mathbf{b}-\mathbf{A} \mathbf{x}^{(\ell)}$.
For stationary methods, one has:

$$
\begin{gathered}
\mathbf{A} \mathbf{e}^{(\ell)}=\mathbf{A} \mathbf{x}-\mathbf{A} \mathbf{x}^{(\ell)}=\mathbf{r}^{(\ell)} \\
\Rightarrow \quad\left\|\mathbf{r}^{(\ell)}\right\| \leq\|\mathbf{A}\|\left\|\mathbf{e}^{(\ell)}\right\| \quad \text { et }\left\|\mathbf{e}^{(\ell)}\right\| \leq \mid\left\|\mathbf{A}^{-1}\right\|\left\|\mathbf{r}^{(\ell)}\right\|
\end{gathered}
$$

Stationary methods - Standard methods [1/3]

We consider a regular decomposition: $\mathbf{A}=\mathbf{M}-\mathbf{N}$ where $\mathbf{M} \in \mathbb{R}^{n \times n}$ is inversible.

$\mathbf{x}^{(0)} \in \mathbb{C}^{n}$	Stationary method
for $\ell=0,1, \ldots$ do	
$\mid \quad \mathbf{M x} \mathbf{x}^{(\ell+1)}=\mathbf{N} \mathbf{x}^{(\ell)}+\mathbf{b}$	
end	

Choices

	By points	By blocks
Jacobi	$\mathbf{M}=\mathbf{D}$	$\mathbf{M}=\mathbf{D}^{\text {blk }}$
Gauss-Seidel	$\mathbf{M}=\mathbf{D}+\mathbf{L}$	$\mathbf{M}=\mathbf{D}^{\mathrm{blk}}+\mathbf{L}^{\mathrm{blk}}$

Stationary methods - Standard methods [2/3]

We consider a regular decomposition: $\mathbf{A}=\mathbf{M}-\mathbf{N}$ where $\mathbf{M} \in \mathbb{R}^{n \times n}$ is inversible.

Stationary method with relaxation	
$\mathbf{x}^{(0)} \in \mathbb{C}^{n}$	
for $\ell=0,1, \ldots$ do	
$\mathbf{M} \tilde{\mathbf{x}}=\mathbf{N} \mathbf{x}^{(\ell)}+\mathbf{b}$ $\mathbf{x}^{(\ell+1)}=\omega \tilde{\mathbf{x}}+(1-\omega) \mathbf{x}^{(\ell)}$ end	

Choices

	By points	By blocks
Jacobi over relaxation (JOR)	$\mathbf{M}=\mathbf{D}$	$\mathbf{M}=\mathbf{D}^{\text {blk }}$
Successive over relaxation (SOR)	$\mathbf{M}=\mathbf{D}+\mathbf{L}$	$\mathbf{M}=\mathbf{D}^{\text {blk }}+\mathbf{L}^{\text {blk }}$

Stationary methods - Standard methods $[3 / 3]$

Convergence of stationary methods

- Convergence of and only if $\rho(\mathbf{B})<1$ with $\mathbf{B}=\mathbf{M}^{-1} \mathbf{N}$.
- If \mathbf{A} is a strict diagonal dominant matrix (i.e. $\left.\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|, \forall i\right)$
- Jacobi converges
- GS converges
- SOR converges if $0<\omega \leq 1$
- Si \mathbf{A} is a symmetric positive definite matrix (i.e. $\mathbf{A}=\mathbf{A}^{*}$ et $(\mathbf{A x}, \mathbf{x})>0, \forall \mathrm{x} \neq 0$)
- Jacobi converges if $(2 \mathbf{D}-\mathbf{A})$ is a symmetric positive definite matrix
- GS converges
- SOR converges if and only if $0<\omega<2$

What we generally expect for the convergence rates:

$$
\begin{gathered}
\text { Jacobi }<\text { Gauss-Seidel }<\text { SOR } \\
\text { By points }<\text { By blocks }
\end{gathered}
$$

Stationary methods - Algorithmic aspects

Jacobi method $\quad(\mathbf{M}=\mathbf{D}$ and $\mathbf{N}=-(\mathbf{L}+\mathbf{U}))$

```
    \mp@subsup{x}{}{(0)}\in\mp@subsup{\mathbb{R}}{}{n}
    for }\ell=0,1,\ldots\mathrm{ do
        Dx}\mp@subsup{}{}{(\ell+1)}=\mathbf{b}-(\mathbf{L}+\mathbf{U})\mp@subsup{\mathbf{x}}{}{(\ell)
    end
```

 Jacobi method (rewriting)
 \(x_{i}^{(0)} \in \mathbb{R}\) for \(i=1 \ldots n\)
 for \(\ell=0,1, \ldots\) do
 for \(i=1 \ldots n\) do
 \(x_{i}^{(\ell+1)}=a_{i i}^{-1}\left(b_{i}-\sum_{i \neq j} a_{i j} x_{j}^{(\ell)}\right)\)
 end
 end

Discussion

- Matrix-vector product with dense matrice ($\mathbf{L}+\mathbf{U}$)
- Linear combinations because \mathbf{D} is diagonal
- The iterations of the interior loop are independent.

Stationary methods - Algorithmic aspects [2/3]

Gauss-Seidel method $\quad(\mathbf{M}=\mathbf{L}+\mathbf{D}$ and $\mathbf{N}=-\mathbf{U})$
$\mathbf{x}^{(0)} \in \mathbb{R}^{n}$

$$
\text { for } \ell=0,1, \ldots \text { do }
$$

$$
(\mathbf{D}+\mathbf{L}) \mathbf{x}^{(\ell+1)}=\mathbf{b}-\mathbf{U} \mathbf{x}^{(\ell)} \quad \Leftrightarrow \mathbf{D} \mathbf{x}^{(\ell+1)}=\mathbf{b}-\mathbf{L} \mathbf{x}^{(\ell+1)}-\mathbf{U} \mathbf{x}^{(\ell)}
$$

end

Gauss-Seidel method (rewritting)

$x_{i}^{(0)} \in \mathbb{R}$ for $i=1 \ldots n$
for $\ell=0,1, \ldots$ do

$$
\text { for } i=1 \ldots n \text { do }
$$

$x_{i}^{(\ell+1)}=a_{i i}^{-1}\left(b_{i}-\sum_{j<i} a_{i j} x_{j}^{(\ell+1)}-\sum_{i<j} a_{i j} x_{j}^{(\ell)}\right)$
end
end

Discussion

- For each ℓ, solution of a inferior triangular system
(Descent in //)
- The interations of the interior loop are dependant:

For each i, the solution is updated by using the last available values.

Stationary methods - Algorithmic aspects

Block Jacobi/Gauss-Seidel methods (rewritting)

$$
\begin{aligned}
& \mathbf{x}_{I}^{(0)} \in \mathbb{R}^{n_{I}} \text { for } I=1 \ldots n^{\mathrm{blk}} \\
& \text { for } \ell=0,1, \ldots \text { do } \\
& \text { for } I=1 \ldots n^{\mathrm{blk}} \text { do } \\
& \mathbf{A}_{I I} \mathbf{x}_{I}^{(\ell+1)}=\mathbf{b}_{I}-\sum_{I \neq J} \mathbf{A}_{I J} \mathbf{x}_{J}^{(\ell)} \quad \text { if block Jacobi } \\
& \mathbf{A}_{I I} \mathbf{x}_{I}^{(\ell+1)}=\mathbf{b}_{I}-\sum_{J<I} \mathbf{A}_{I J} \mathbf{x}_{J}^{(\ell+1)}-\sum_{I<J} \mathbf{A}_{I J} \mathbf{x}_{J}^{(\ell)} \quad \text { if block G.-S. } \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

Discussion

- Interior loop over $n^{\text {blk }}$ blocks of $\mathbf{x}^{(\ell)}$, with $n^{\text {blk }} \leq n$.
- Jacobi: Matrix-vector product with dense matrix ($\mathbf{L}^{\mathrm{blk}}+\mathbf{U}^{\mathrm{blk}}$)
- Jacobi: Solution of a block diagonal system
(Blocks solved in //)
- G.-S.: Solution of a block inferior triangular system

Iterative methods for linear systems

Stationary methods
System arising from a finite difference discretization

Finite difference scheme - Description [1/3]

Definition of the problem

The field $u(x, y)$ is governed by the Poisson equation on a square domain:

$$
\left\{\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} & =f(x, y),, & & \text { for }(x, y) \in \Omega=] a, b[\times] a, b[\\
u & =0, & & \text { for }(x, y) \in \partial \Omega .
\end{aligned}\right.
$$

Discretization and numerical scheme

The problem is discretized on a regular grid:

- Discretization points: $\left(x_{i}, y_{j}\right)=(a+i h, a+j h)(i, j=0, \ldots, n+1)$
- Spatial step: $h=(b-a) /(n+1)$
- Approximate field: $u_{i, j} \approx u\left(x_{i}, y_{j}\right)$

We consider a standard finite difference scheme with a 5 -point stencil:

$$
\frac{1}{h^{2}}\left(u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}-4 u_{i, j}\right)=f_{i, j} \quad(i, j=1, \ldots, n)
$$

with $u_{i, j}=0(i$ and $/$ or $j \in\{0, n+1\})$ and $f_{i, j}=f\left(x_{i}, y_{j}\right)$.
Asymptotic accuracy: $\mathcal{O}\left(h^{2}\right)$

Finite difference scheme - Description $[2 / 3]$

$$
\left\{\begin{aligned}
\frac{1}{h^{2}}\left(u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}-4 u_{i, j}\right) & =f_{i, j} & & (i, j=1, \ldots, n) \\
u_{i, j} & =0 & & (i \text { and } / \text { or } j \in\{0, n+1\})
\end{aligned}\right.
$$

Matrix representation of the problem: $\mathbf{A u = f} \quad \mathbf{A} \in \mathbb{R}^{n^{2} \times n^{2}} \quad \mathbf{u}, \mathrm{f} \in \mathbb{R}^{n^{2}}$

Finite difference grid

Matrix of the system

Finite difference scheme - Description [3/3]

$$
\left\{\begin{aligned}
\frac{1}{h^{2}}\left(u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}-4 u_{i, j}\right) & =f_{i, j} & & (i, j=1, \ldots, n) \\
u_{i, j} & =0 & & (i \text { and } / \text { or } j \in\{0, n+1\})
\end{aligned}\right.
$$

Matrix representation of the problem: $\mathrm{Au}=\mathbf{f}$

$$
\mathbf{A}=\frac{1}{h^{2}}\left[\begin{array}{ccccccc}
-4 & 1 & & & 1 & & \\
1 & -4 & 1 & & & \ddots & \\
& \ddots & \ddots & \ddots & & & 1 \\
& & & & & & \\
1 & & & \ddots & \ddots & \ddots & \\
& \ddots & & & 1 & -4 & 1 \\
& & 1 & & & 1 & -4
\end{array}\right] \mathbf{u}=\left[\begin{array}{c}
u_{1,1} \\
u_{1,2} \\
\vdots \\
u_{i, j} \\
\vdots \\
u_{n, n-1} \\
u_{n, n}
\end{array}\right] \mathbf{f}=\left[\begin{array}{c}
f_{1,1} \\
f_{1,2} \\
\vdots \\
f_{i, j} \\
\vdots \\
f_{n, n-1} \\
f_{n, n}
\end{array}\right]
$$

Properties of A: Pentadiagonal matrix + Symmetric positive definite matrix

Finite difference scheme - Solution with Jacobi

Finite difference scheme - Solution with Jacobi [2/3]

Finite difference scheme - Solution with Jacobi [3/3]

Parallelization

- Domain partitioning and matrix partitioning:

Finite difference grid

Matrix of the system

- Analysis of communications:
- Each process has to communicate with both neighbors.
- Sending/reception of n updated unknowns with each neighbor.
- Only (local) point-to-point communications.

Finite difference scheme - Solution with Jacobi $[4 / 3]$

Parallel algorithm with Jacobi (1D partition)

On each process p :
$u_{i, j}^{(0)} \in \mathbb{R}$ for $i=i_{\text {start }, p}, \ldots, i_{\text {end }, p}$ and $j=1, \ldots, n$
for $\ell=0,1, \ldots$ do
Communication phase:

- If $p>0$: send $u_{i_{\text {start }, p, \star}}$ to process $p-1$
- If $p>0$: receive $u_{i_{\text {start }, p-1, \star}}$ from process $p-1$
- If $p<(P-1)$: send $u_{i_{\text {end }, p, \star}}$ to process $p+1$
- If $p<(P-1)$: receive $u_{i_{\text {end }, p}+1, \star}$ from process $p+1$

Update of unknowns

for $i=i_{\text {start }, p}, \ldots, i_{\text {end }, p}$ do
for $j=1, \ldots, n$ do
$u_{i, j}^{(\ell+1)}=\frac{1}{4}\left(u_{i+1, j}^{(\ell)}+u_{i-1, j}^{(\ell)}+u_{i, j+1}^{(\ell)}+u_{i, j-1}^{(\ell)}\right)-\frac{h^{2}}{4} f_{i, j}$
end
end
end

Finite difference scheme - Solution with Gauss-Seidel

Sequential algorithm with Gauss-Seidel
$u_{i, j}^{(0)} \in \mathbb{R}$ for $i, j=1 \ldots n$
for $\ell=0,1, \ldots$ do
for $i=1, \ldots, n$ do
for $j=1, \ldots, n$ do
$u_{i, j}^{(\ell+1)}=\frac{1}{4}\left(u_{i+1, j}^{(\ell)}+u_{i-1, j}^{(\ell+1)}+u_{i, j+1}^{(\ell)}+u_{i, j-1}^{(\ell+1)}\right)-\frac{h^{2}}{4} f_{i, j}$
end
end
end

Finite difference scheme - Solution with Gauss-Seidel

Parallelization of the scheme

The Gauss-Seidel method uses the last available values for the update.
\Rightarrow This procedure is (a priori) sequential

Finite difference grid

Matrix of the system

Idea: change the order of evaluation of the unknowns (i.e. permutation of lines) to make this procedure parallelizable

Finite difference scheme - Solution with Gauss-Seidel
Parallelization of the scheme (with coloring)

The unknowns associated to a given color can be updated in parallel.

Finite difference scheme - Solution with Gauss-Seidel [4/6]

Sequential algorithm with Gauss-Seidel (with red-black coloring)

$$
\begin{aligned}
& u_{i, j}^{(0)} \in \mathbb{R} \text { for } i, j=1 \ldots n \\
& \text { for } \ell=0,1, \ldots \text { do } \\
& \text { \\
Update of red unknowns } \\
& \text { for } i=1, \ldots, n \text { do } \\
& \text { for } j=1, \ldots, n \text { do } \\
& \text { If }(i, j) \text { red: } u_{i, j}^{(\ell+1)}=\frac{1}{4}\left(u_{i+1, j}^{(\ell)}+u_{i-1, j}^{(\ell)}+u_{i, j+1}^{(\ell)}+u_{i, j-1}^{(\ell)}\right)-\frac{h^{2}}{4} f_{i, j} \\
& \text { end } \\
& \text { end } \\
& \text { \\
Update of black unknowns } \\
& \text { for } i=1, \ldots, n \text { do } \\
& \text { for } j=1, \ldots, n \text { do } \\
& \text { If }(i, j) \text { black: } \\
& u_{i, j}^{(\ell+1)}=\frac{1}{4}\left(u_{i+1, j}^{(\ell+1)}+u_{i-1, j}^{(\ell+1)}+u_{i, j+1}^{(\ell+1)}+u_{i, j-1}^{(\ell+1)}\right)-\frac{h^{2}}{4} f_{i, j} \\
& \text { end } \\
& \text { end } \\
& \text { end }
\end{aligned}
$$

Finite difference scheme - Solution with Gauss-Seidel [5/6]

Parallel algorithm with Gauss-Seidel (with red-black coloring)

For each process p :
$u_{i, j}^{(0)} \in \mathbb{R}$ for $i=i_{\text {start }, p}, \ldots, i_{\text {end }, p}$ and $j=1, \ldots, n$
for $\ell=0,1, \ldots$ do
Communication phase (as for Jacobi)
$\backslash \backslash$ Update of red unknowns
for $i=i_{\text {start }, p}, \ldots, i_{\text {end }, p}$ do
for $j=1, \ldots, n$ do
If (i, j) red: $u_{i, j}^{(\ell+1)}=\frac{1}{4}\left(u_{i+1, j}^{(\ell)}+u_{i-1, j}^{(\ell)}+u_{i, j+1}^{(\ell)}+u_{i, j-1}^{(\ell)}\right)-\frac{h^{2}}{4} f_{i, j}$
end
end
Communication phase (as for Jacobi)
$\backslash \backslash$ Update of black unknowns
for $i=i_{\text {start }, p}, \ldots, i_{\text {end }, p}$ do
for $j=1, \ldots, n$ do
If (i, j) black: $u_{i, j}^{(\ell+1)}=\frac{1}{4}\left(u_{i+1, j}^{(\ell+1)}+u_{i-1, j}^{(\ell+1)}+u_{i, j+1}^{(\ell+1)}+u_{i, j-1}^{(\ell+1)}\right)-\frac{h^{2}}{4} f_{i, j}$
end
end
end

Comments on parallelization strategies with coloring

- Basic idea:
- Each color = Unknowns updated in parallel
- Communication phase between each color
- Different numbering, so ...
- Different algorithm, but still Gauss-Seidel
- Different numerical solution, but scheme with the same properties
- Some extensions:
- If larger stencil \rightarrow Coloring with more colors
- If unstructured mesh \rightarrow Algorithms for automatic coloring

Ressources

- Méthodes Numériques: Algorithmes, analyse et applications A. Quarteroni, R. Sacco, F. Saleri (2007), Springer
- Calcul scientifique parallèle
F. Magoulès et F.-X. Roux (2017), Dunod
- Calcul scientifique parallèle
P. Ciarlet and E. Jamelot, polycopié de cours

