
0

.

Parallel Scientific Computing
Course AMS301 — Fall 2023 — Lecture 3

Iterative methods for linear systems (1)
Stationary methods & Application to finite differences

Axel Modave

Solution procedures for linear systems — Generalities [1/3]

Find x ∈ Rn such that Ax = b with A ∈ Rn×n and b ∈ Rn.

Motivation

Many computational procedures require the solution of linear systems:

• for linear physical problems,
• for non-linear physical problems,
• for optimization procedures,
• . . .

for many applications:

• electromagnetic compatibility, aeroacoustic studies, CFD,
• medical imaging, geophysical imaging,
• . . .

From a mathematical point of view:

• discretized elliptic problem
⇒ linear system to solve!

• discretized hyperbolic problem with an implicit time stepping scheme
⇒ linear system to solve at each time step!

1

Solution procedures for linear systems — Generalities [2/3]

Find x ∈ Rn such that Ax = b with A ∈ Rn×n and b ∈ Rn.

Solution procedures

▶ Direct methods: Factorization of A into triangular and diagonal matrices
(ex. A = LU) and solution of simpler problems.

Ax = b ⇔ LUx = b ⇔

∣∣∣∣∣ Ly = b

Ux = y

Advantages: exact solution known after a given number of operations
Difficulties: heavy computational cost (operations/memory), hard to parallelize

▶ Iterative methods: Iterative procedure to minimizing an error ∥x(ℓ) − xref∥
and/or a residual ∥Ax(ℓ) − b∥.∣∣∣∣∣∣

x(0) = Iter(0) (A,b)

x(ℓ+1) = Iter(ℓ+1)
(
x(ℓ),x(ℓ−1), . . . ,A,b

)
, pour ℓ ≥ 0

Advantages: limited cost per iteration (operations/memory), easy to parallelize
Difficulties: approximate solution, control of the convergence of the process

2

Solution procedures for linear systems — Generalities [3/3]

Find x ∈ Rn such that Ax = b with A ∈ Rn×n and b ∈ Rn.

▶ Iterative methods:∣∣∣∣∣∣
x(0) = Iter(0) (A,b)

x(ℓ+1) = Iter(ℓ+1)
(
x(ℓ),x(ℓ−1), . . . ,A,b

)
, pour ℓ ≥ 0

The order of the method is the numb. of steps which the current iter. depends on.

Stationary method if the functions Iter(ℓ) are indep. of ℓ, otherwise nonstationary

Linear method if the functions Iter(ℓ) are linear, otherwise nonlinear

Today, we consider stationary linear iterative schemes of first order:∣∣∣∣∣ x(0) given

x(ℓ+1) = Bx(ℓ) + f , ℓ ≥ 0

where B ∈ Rn×n is the iteration matrix and f ∈ Rn depends on b.

3

Iterative methods for linear systems
Stationary methods

System arising from a finite difference discretization

Stationary methods — Generalities [1/2]

Find x ∈ Rn such that Ax = b with A ∈ Rn×n and b ∈ Rn.

We consider a general procedure:∣∣∣∣∣ x(0) given

x(ℓ+1) = Bx(ℓ) + f , ℓ ≥ 0

where B ∈ Rn×n is the iteration matrix and f ∈ Rn depends on b.

Definitions and properties
• Consistent method if the solution is a fixed point of the scheme (i.e. x = Bx+ f).

OK if and only if f = (I−B)A−1b

• Convergent method if limℓ→∞ x(ℓ) = x for all x(0).

For a consistent method, OK if and only if ρ(B) < 1

The spectral radius ρ(B) is the max. of the absolute values of the eigenval. of B.

4

Stationary methods — Generalities [2/2]

Find x ∈ Rn such that Ax = b with A ∈ Rn×n and b ∈ Rn.

We consider a general procedure:∣∣∣∣∣ x(0) given

x(ℓ+1) = Bx(ℓ) + f , ℓ ≥ 0

where B ∈ Rn×n is the iteration matrix and f ∈ Rn depends on b.

Definitions and properties

• We use a stopping criteria on the number of iterations and the norm of the residual:

ℓ ≤ ℓtol and
∥∥r(ℓ)∥∥/∥∥r(0)∥∥ ≤ εtol

with the residual vector r(ℓ) := b−Ax(ℓ) .

For stationary methods, one has:

Ae(ℓ) = Ax−Ax(ℓ) = r(ℓ)

⇒ ∥r(ℓ)∥ ≤ |||A||| ∥e(ℓ)∥ et ∥e(ℓ)∥ ≤
∣∣∣∣∣∣A−1

∣∣∣∣∣∣ ∥r(ℓ)∥∥
−→ Choice of B for fast convergence and efficient computation?

5

Stationary methods — Standard methods [1/3]

We consider a regular decomposition: A = M−N where M ∈ Rn×n is inversible.

Stationary method

x(0) ∈ Cn

for ℓ = 0, 1, . . . do
Mx(ℓ+1) = Nx(ℓ) + b

end

Choices

By points By blocks
Jacobi M = D M = Dblk

Gauss-Seidel M = D+ L M = Dblk + Lblk

 × × ×
× × ×
× × ×

︸ ︷︷ ︸

A

=

 ×
×

×

︸ ︷︷ ︸

D

+

 ◦
× ◦
× × ◦

︸ ︷︷ ︸

L

+

 ◦ × ×
◦ ×

◦

︸ ︷︷ ︸

U

6

Stationary methods — Standard methods [2/3]

We consider a regular decomposition: A = M−N where M ∈ Rn×n is inversible.

Stationary method with relaxation

x(0) ∈ Cn

for ℓ = 0, 1, . . . do
Mx̃ = Nx(ℓ) + b

x(ℓ+1) = ωx̃+ (1− ω)x(ℓ) (ω is a real parameter)

end

Choices

By points By blocks
Jacobi over relaxation (JOR) M = D M = Dblk

Successive over relaxation (SOR) M = D+ L M = Dblk + Lblk

 [×] [×] [×]

[×] [×] [×]

[×] [×] [×]

︸ ︷︷ ︸

Ablk

=

 [×]

[×]

[×]

︸ ︷︷ ︸

Dblk

+

 ◦
[×] ◦
[×] [×] ◦

︸ ︷︷ ︸

Lblk

+

 ◦ [×] [×]

◦ [×]

◦

︸ ︷︷ ︸

Ublk

7

Stationary methods — Standard methods [3/3]

Convergence of stationary methods

▶ Convergence of and only if ρ(B) < 1 with B = M−1N.
▶ If A is a strict diagonal dominant matrix (i.e. |aii| >

∑
j ̸=i |aij |, ∀i)

• Jacobi converges
• GS converges
• SOR converges if 0 < ω ≤ 1

▶ Si A is a symmetric positive definite matrix (i.e. A = A∗ et
(
Ax,x

)
> 0, ∀x ̸= 0)

• Jacobi converges if (2D−A) is a symmetric positive definite matrix
• GS converges
• SOR converges if and only if 0 < ω < 2

What we generally expect for the convergence rates:

Jacobi < Gauss-Seidel < SOR
By points < By blocks

8

Stationary methods — Algorithmic aspects [1/3]

Jacobi method (M = D and N = −(L+U))

x(0) ∈ Rn

for ℓ = 0, 1, . . . do
Dx(ℓ+1) = b− (L+U)x(ℓ)

end

Jacobi method (rewriting)

x
(0)
i ∈ R for i = 1 . . . n

for ℓ = 0, 1, . . . do
for i = 1 . . . n do

x
(ℓ+1)
i = a−1

ii

(
bi −

∑
i̸=j aijx

(ℓ)
j

)
end

end

Discussion
– Matrix-vector product with dense matrice (L+U) (BLAS in //)
– Linear combinations because D is diagonal (Lin. combi. in //)
– The iterations of the interior loop are independent.

9

Stationary methods — Algorithmic aspects [2/3]

Gauss-Seidel method (M = L+D and N = −U)

x(0) ∈ Rn

for ℓ = 0, 1, . . . do
(D+ L)x(ℓ+1) = b−Ux(ℓ) ⇔ Dx(ℓ+1) = b− Lx(ℓ+1) −Ux(ℓ)

end

Gauss-Seidel method (rewritting)

x
(0)
i ∈ R for i = 1 . . . n

for ℓ = 0, 1, . . . do
for i = 1 . . . n do

x
(ℓ+1)
i = a−1

ii

(
bi −

∑
j<i aijx

(ℓ+1)
j −

∑
i<j aijx

(ℓ)
j

)
end

end

Discussion
– For each ℓ, solution of a inferior triangular system (Descent in //)
– The interations of the interior loop are dependant:

For each i, the solution is updated by using the last available values.

10

Stationary methods — Algorithmic aspects [3/3]

Block Jacobi/Gauss-Seidel methods (rewritting)

x
(0)
I ∈ RnI for I = 1 . . . nblk

for ℓ = 0, 1, . . . do
for I = 1 . . . nblk do

AIIx
(ℓ+1)
I = bI −

∑
I ̸=J AIJx

(ℓ)
J if block Jacobi

AIIx
(ℓ+1)
I = bI −

∑
J<I AIJx

(ℓ+1)
J −

∑
I<J AIJx

(ℓ)
J if block G.-S.

end

end

Discussion
– Interior loop over nblk blocks of x(ℓ), with nblk ≤ n.

– Jacobi: Matrix-vector product with dense matrix (Lblk +Ublk) (BLAS in //)

– Jacobi: Solution of a block diagonal system (Blocks solved in //)

– G.-S.: Solution of a block inferior triangular system (Descent in //)

11

Iterative methods for linear systems
Stationary methods

System arising from a finite difference discretization

Finite difference scheme — Description [1/3]

Definition of the problem
The field u(x, y) is governed by the Poisson equation on a square domain:

∂2u

∂x2
+

∂2u

∂y2
= f(x, y), for (x, y) ∈ Ω =]a, b[×]a, b[,

u = 0, for (x, y) ∈ ∂Ω.

Discretization and numerical scheme
The problem is discretized on a regular grid:

– Discretization points: (xi, yj) = (a+ ih, a+ jh) (i, j = 0, . . . , n+ 1)

– Spatial step: h = (b− a)/(n+ 1)

– Approximate field: ui,j ≈ u(xi, yj)

We consider a standard finite difference scheme with a 5-point stencil:

1

h2

(
ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j

)
= fi,j (i, j = 1, . . . , n)

with ui,j = 0 (i and/or j ∈ {0, n+ 1}) and fi,j = f(xi, yj).

Asymptotic accuracy: O(h2)

12

Finite difference scheme — Description [2/3]

1

h2

(
ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j

)
= fi,j (i, j = 1, . . . , n)

ui,j = 0 (i and/or j ∈ {0, n+ 1})

Matrix representation of the problem: Au = f A ∈ Rn2×n2
u, f ∈ Rn2

Finite difference grid Matrix of the system

13

Finite difference scheme — Description [3/3]

1

h2

(
ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j

)
= fi,j (i, j = 1, . . . , n)

ui,j = 0 (i and/or j ∈ {0, n+ 1})

Matrix representation of the problem: Au = f

A =
1

h2

−4 1 1

1 −4 1
. . .

. . .
. . .

. . . 1

1
. . .

. . .
. . .

. . . 1 −4 1

. . . 1 1 −4

u =

u1,1

u1,2

...

ui,j

...

un,n−1

un,n

f =

f1,1

f1,2

...

fi,j
...

fn,n−1

fn,n

Properties of A: Pentadiagonal matrix + Symmetric positive definite matrix

14

Finite difference scheme — Solution with Jacobi [1/3]

Mx(ℓ+1) = Nx(ℓ) + b

with A = (M − N) = −
4

h2
I −

1

h2

0 −1 −1

−1 0 −1
. . .

. . .
. . .

. . . −1

−1
. . .

. . .
. . .

. . . −1 0 −1

. . . −1 −1 0

Sequential algorithm with Jacobi

u
(0)
i,j ∈ R for i, j = 1 . . . n

for ℓ = 0, 1, . . . do
for i = 1, . . . , n do

for j = 1, . . . , n do

−
4

h2
u
(ℓ+1)
i,j = −

1

h2

(
u
(ℓ)
i+1,j + u

(ℓ)
i−1,j + u

(ℓ)
i,j+1 + u

(ℓ)
i,j−1

)
+ fi,j

end

end

end

15

Finite difference scheme — Solution with Jacobi [2/3]

Mx(ℓ+1) = Nx(ℓ) + b

avec A = (M − N) = −
4

h2
I −

1

h2

0 −1 −1

−1 0 −1
. . .

. . .
. . .

. . . −1

−1
. . .

. . .
. . .

. . . −1 0 −1

. . . −1 −1 0

Sequential algorithm with Jacobi (rewritting)

u
(0)
i,j ∈ R for i, j = 1 . . . n

for ℓ = 0, 1, . . . do
for i = 1, . . . , n do

for j = 1, . . . , n do

u
(ℓ+1)
i,j =

1

4

(
u
(ℓ)
i+1,j + u

(ℓ)
i−1,j + u

(ℓ)
i,j+1 + u

(ℓ)
i,j−1

)
−

h2

4
fi,j

end

end

end

16

Finite difference scheme — Solution with Jacobi [3/3]

Parallelization

▶ Domain partitioning and matrix partitioning:

Finite difference grid Matrix of the system

▶ Analysis of communications:
• Each process has to communicate with both neighbors.
• Sending/reception of n updated unknowns with each neighbor.
• Only (local) point-to-point communications.

17

Finite difference scheme — Solution with Jacobi [4/3]

Parallel algorithm with Jacobi (1D partition)

On each process p:
u
(0)
i,j ∈ R for i = istart,p, . . . , iend,p and j = 1, . . . , n

for ℓ = 0, 1, . . . do
Communication phase:

• If p > 0: send uistart,p,⋆ to process p− 1

• If p > 0: receive uistart,p−1,⋆ from process p− 1

• If p < (P − 1): send uiend,p,⋆ to process p+ 1

• If p < (P − 1): receive uiend,p+1,⋆ from process p+ 1

\\ Update of unknowns
for i = istart,p, . . . , iend,p do

for j = 1, . . . , n do

u
(ℓ+1)
i,j =

1

4

(
u
(ℓ)
i+1,j + u

(ℓ)
i−1,j + u

(ℓ)
i,j+1 + u

(ℓ)
i,j−1

)
−

h2

4
fi,j

end

end

end

(In the communications, ⋆ indicates that the whole line is sent.)
18

Finite difference scheme — Solution with Gauss-Seidel [1/6]

Mx(ℓ+1) = Nx(ℓ) + b

with A = (M − N) =
1

h2

−4

1 −4
. . .

. . .
. . .

1
. . .

. . .
. . . 1 −4

. . . 1 1 −4

−

1

h2

0 −1 −1

0 −1
. . .

. . .
. . .

. . . −1

. . .
. . .

. . . 0 −1
. . . 0

Sequential algorithm with Gauss-Seidel

u
(0)
i,j ∈ R for i, j = 1 . . . n

for ℓ = 0, 1, . . . do
for i = 1, . . . , n do

for j = 1, . . . , n do

u
(ℓ+1)
i,j =

1

4

(
u
(ℓ)
i+1,j + u

(ℓ+1)
i−1,j + u

(ℓ)
i,j+1 + u

(ℓ+1)
i,j−1

)
−

h2

4
fi,j

end

end

end

19

Finite difference scheme — Solution with Gauss-Seidel [2/6]

Parallelization of the scheme

The Gauss-Seidel method uses the last available values for the update.
⇒ This procedure is (a priori) sequential

Finite difference grid Matrix of the system

Idea: change the order of evaluation of the unknowns (i.e. permutation of lines)
to make this procedure parallelizable

20

Finite difference scheme — Solution with Gauss-Seidel [3/6]

Parallelization of the scheme (with coloring)

Natural numbering

Numbering with
“red-black” coloring

The unknowns associated to a given color can be updated in parallel.

21

Finite difference scheme — Solution with Gauss-Seidel [4/6]

Sequential algorithm with Gauss-Seidel (with red-black coloring)

u
(0)
i,j ∈ R for i, j = 1 . . . n

for ℓ = 0, 1, . . . do
\\ Update of red unknowns
for i = 1, . . . , n do

for j = 1, . . . , n do

If (i, j) red: u
(ℓ+1)
i,j =

1

4

(
u
(ℓ)
i+1,j + u

(ℓ)
i−1,j + u

(ℓ)
i,j+1 + u

(ℓ)
i,j−1

)
−

h2

4
fi,j

end

end

\\ Update of black unknowns
for i = 1, . . . , n do

for j = 1, . . . , n do
If (i, j) black:

u
(ℓ+1)
i,j =

1

4

(
u
(ℓ+1)
i+1,j + u

(ℓ+1)
i−1,j + u

(ℓ+1)
i,j+1 + u

(ℓ+1)
i,j−1

)
−

h2

4
fi,j

end

end

end
22

Finite difference scheme — Solution with Gauss-Seidel [5/6]

Parallel algorithm with Gauss-Seidel (with red-black coloring)

For each process p:

u
(0)
i,j ∈ R for i = istart,p, . . . , iend,p and j = 1, . . . , n

for ℓ = 0, 1, . . . do

Communication phase (as for Jacobi)
\\ Update of red unknowns
for i = istart,p, . . . , iend,p do

for j = 1, . . . , n do

If (i, j) red: u
(ℓ+1)
i,j =

1

4

(
u
(ℓ)
i+1,j + u

(ℓ)
i−1,j + u

(ℓ)
i,j+1 + u

(ℓ)
i,j−1

)
−

h2

4
fi,j

end

end
Communication phase (as for Jacobi)
\\ Update of black unknowns
for i = istart,p, . . . , iend,p do

for j = 1, . . . , n do

If (i, j) black: u
(ℓ+1)
i,j =

1

4

(
u
(ℓ+1)
i+1,j + u

(ℓ+1)
i−1,j + u

(ℓ+1)
i,j+1 + u

(ℓ+1)
i,j−1

)
−

h2

4
fi,j

end

end

end

23

Finite difference scheme — Solution with Gauss-Seidel [6/6]

Comments on parallelization strategies with coloring

▶ Basic idea:
• Each color = Unknowns updated in parallel
• Communication phase between each color

▶ Different numbering, so . . .
• Different algorithm, but still Gauss-Seidel
• Different numerical solution, but scheme with the same properties

▶ Some extensions:
• If larger stencil → Coloring with more colors
• If unstructured mesh → Algorithms for automatic coloring

24

Ressources
▶ Méthodes Numériques : Algorithmes, analyse et applications

A. Quarteroni, R. Sacco, F. Saleri (2007), Springer
▶ Calcul scientifique parallèle

F. Magoulès et F.-X. Roux (2017), Dunod
▶ Calcul scientifique parallèle

P. Ciarlet and E. Jamelot, polycopié de cours

