Parallel Scientific Computing Course AMS301 — Fall 2023 — Lecture 3

Iterative methods for linear systems (1) Stationary methods & Application to finite differences

Axel Modave

Solution procedures for linear systems — Generalities [1/3]

Find $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{A}\mathbf{x} = \mathbf{b}$ with $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^n$.

Motivation

Many computational procedures require the solution of linear systems:

- for linear physical problems,
- for non-linear physical problems,
- for optimization procedures,
- ...

for many applications:

- · electromagnetic compatibility, aeroacoustic studies, CFD,
- medical imaging, geophysical imaging,

• ...

From a mathematical point of view:

- discretized elliptic problem
 - \Rightarrow linear system to solve!
- · discretized hyperbolic problem with an implicit time stepping scheme
 - \Rightarrow linear system to solve at each time step!

Solution procedures for linear systems — Generalities [2/3]

Find $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{A}\mathbf{x} = \mathbf{b}$ with $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^n$.

Solution procedures

Direct methods: Factorization of A into triangular and diagonal matrices (ex. A = LU) and solution of simpler problems.

$$\mathbf{A}\mathbf{x} = \mathbf{b} \quad \Leftrightarrow \quad \mathbf{L}\mathbf{U}\mathbf{x} = \mathbf{b} \quad \Leftrightarrow \quad \begin{vmatrix} \mathbf{L}\mathbf{y} = \mathbf{b} \\ \mathbf{U}\mathbf{x} = \mathbf{y} \end{vmatrix}$$

Advantages: exact solution known after a given number of operations Difficulties: heavy computational cost (operations/memory), hard to parallelize

▶ Iterative methods: Iterative procedure to minimizing an error $\|\mathbf{x}^{(\ell)} - \mathbf{x}_{ref}\|$ and/or a residual $\|\mathbf{A}\mathbf{x}^{(\ell)} - \mathbf{b}\|$.

$$\begin{split} \mathbf{x}^{(0)} &= \mathrm{Iter}_{(0)}\left(\mathbf{A}, \mathbf{b}\right) \\ \mathbf{x}^{(\ell+1)} &= \mathrm{Iter}^{(\ell+1)}\left(\mathbf{x}^{(\ell)}, \mathbf{x}^{(\ell-1)}, \dots, \mathbf{A}, \mathbf{b}\right), \quad \text{pour } \ell \geq 0 \end{split}$$

Advantages: limited cost per iteration *(operations/memory)*, easy to parallelize Difficulties: approximate solution, control of the convergence of the process

Solution procedures for linear systems — Generalities [3/3]

Find $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{A}\mathbf{x} = \mathbf{b}$ with $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^n$.

Iterative methods:

$$\begin{split} \mathbf{x}^{(0)} &= \operatorname{Iter}_{(0)}\left(\mathbf{A}, \mathbf{b}\right) \\ \mathbf{x}^{(\ell+1)} &= \operatorname{Iter}^{(\ell+1)}\left(\mathbf{x}^{(\ell)}, \mathbf{x}^{(\ell-1)}, \dots, \mathbf{A}, \mathbf{b}\right), \quad \text{pour } \ell \geq 0 \end{split}$$

The order of the method is the numb. of steps which the current iter. depends on. Stationary method if the functions $\mathrm{Iter}^{(\ell)}$ are indep. of ℓ , otherwise nonstationary Linear method if the functions $\mathrm{Iter}^{(\ell)}$ are linear, otherwise nonlinear

Today, we consider stationary linear iterative schemes of first order:

 $\left| \begin{array}{l} \mathbf{x}^{(0)} \text{ given} \\ \mathbf{x}^{(\ell+1)} = \mathbf{B} \mathbf{x}^{(\ell)} + \mathbf{f}, \quad \ell \geq 0 \end{array} \right.$ where $\mathbf{B} \in \mathbb{R}^{n \times n}$ is the iteration matrix and $\mathbf{f} \in \mathbb{R}^n$ depends on \mathbf{b} .

Iterative methods for linear systems

Stationary methods

System arising from a finite difference discretization

Stationary methods — Generalities [1/2]

Find $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{A}\mathbf{x} = \mathbf{b}$ with $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^n$.

We consider a general procedure:

$$\begin{split} \mathbf{x}^{(0)} & \text{given} \\ \mathbf{x}^{(\ell+1)} = \mathbf{B} \mathbf{x}^{(\ell)} + \mathbf{f}, \quad \ell \geq 0 \end{split}$$

where $\mathbf{B} \in \mathbb{R}^{n \times n}$ is the iteration matrix and $\mathbf{f} \in \mathbb{R}^n$ depends on \mathbf{b} .

Definitions and properties

• Consistent method if the solution is a fixed point of the scheme (*i.e.* $\mathbf{x} = \mathbf{B}\mathbf{x} + \mathbf{f}$).

OK if and only if $\mathbf{f} = (\mathbf{I} - \mathbf{B})\mathbf{A}^{-1}\mathbf{b}$

• Convergent method if $\lim_{\ell \to \infty} \mathbf{x}^{(\ell)} = \mathbf{x}$ for all $\mathbf{x}^{(0)}$.

For a consistent method, $\begin{tabular}{c} {\sf OK} \end{tabular}$ if and only if $\begin{tabular}{c}
ho({f B}) < 1 \end{tabular}$

The spectral radius $\rho(\mathbf{B})$ is the max. of the absolute values of the eigenval. of \mathbf{B} .

Stationary methods — Generalities [2/2]

Find $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{A}\mathbf{x} = \mathbf{b}$ with $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^n$.

We consider a general procedure:

$$\begin{vmatrix} \mathbf{x}^{(0)} \text{ given} \\ \mathbf{x}^{(\ell+1)} = \mathbf{B} \mathbf{x}^{(\ell)} + \mathbf{f}, \quad \ell \ge 0 \end{aligned}$$

where $\mathbf{B} \in \mathbb{R}^{n \times n}$ is the iteration matrix and $\mathbf{f} \in \mathbb{R}^n$ depends on \mathbf{b} .

Definitions and properties

• We use a stopping criteria on the number of iterations and the norm of the residual:

$$\ell \leq \ell_{\mathrm{tol}}$$
 and $\|\mathbf{r}^{(\ell)}\| / \|\mathbf{r}^{(0)}\| \leq \varepsilon_{\mathrm{tol}}$

with the residual vector $\mathbf{r}^{(\ell)} := \mathbf{b} - \mathbf{A} \mathbf{x}^{(\ell)}$.

For stationary methods, one has:

$$\begin{aligned} \mathbf{A}\mathbf{e}^{(\ell)} &= \mathbf{A}\mathbf{x} - \mathbf{A}\mathbf{x}^{(\ell)} = \mathbf{r}^{(\ell)} \\ \Rightarrow \quad \|\mathbf{r}^{(\ell)}\| \leq \|\|\mathbf{A}\| \, \|\mathbf{e}^{(\ell)}\| \quad \text{et} \quad \|\mathbf{e}^{(\ell)}\| \leq \||\mathbf{A}^{-1}\|| \, \|\mathbf{r}^{(\ell)}\| \end{aligned}$$

→ Choice of B for fast convergence and efficient computation?

Stationary methods — Standard methods [1/3]

We consider a regular decomposition: $|\mathbf{A} = \mathbf{M} - \mathbf{N}|$ where $\mathbf{M} \in \mathbb{R}^{n \times n}$ is inversible.

Choices

	By points	By blocks		
Jacobi	$\mathbf{M} = \mathbf{D}$	$\mathbf{M} = \mathbf{D}^{\mathrm{blk}}$		
Gauss-Seidel	$\mathbf{M}=\mathbf{D}+\mathbf{L}$	$\mathbf{M} = \mathbf{D}^{\mathrm{blk}} + \mathbf{L}^{\mathrm{blk}}$		
$\underbrace{\begin{bmatrix} \times \times \times \\ \times \times \times \\ \times \times \times \end{bmatrix}_{\mathbf{A}} = \underbrace{\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$ \begin{array}{c} \times \\ \times \\ \times \\ \end{array} \\ \end{array} \right] + \left[\begin{array}{c} \\ \end{array} \right] $	$\begin{bmatrix} \times \\ \times \\ \times \\ \end{bmatrix} \\ L \end{bmatrix} + \underbrace{\begin{bmatrix} \times \\ \times \\ \\ \end{bmatrix}}_{U}$		

Stationary methods — Standard methods [2/3]

We consider a regular decomposition: $\mathbf{A} = \mathbf{M} - \mathbf{N}$ where $\mathbf{M} \in \mathbb{R}^{n \times n}$ is inversible.

$$\begin{array}{c} \textbf{Stationary method with relaxation} \\ \textbf{x}^{(0)} \in \mathbb{C}^n \\ \textbf{for } \ell = 0, 1, \dots \textbf{ do} \\ & \quad \textbf{M}\tilde{\textbf{x}} = \textbf{N}\textbf{x}^{(\ell)} + \textbf{b} \\ & \quad \textbf{x}^{(\ell+1)} = \omega\tilde{\textbf{x}} + (1-\omega)\textbf{x}^{(\ell)} \\ \textbf{end} \end{array}$$

Choices

		By points		By blocks	
Jacobi over relaxation (JOR)		$\mathbf{M} = \mathbf{D}$		$\mathbf{M} = \mathbf{D}^{\mathrm{blk}}$	
Successive over relaxation (SOR)		$\mathbf{M}=\mathbf{D}+\mathbf{L}$		$\mathbf{M} = \mathbf{D}^{\mathrm{blk}} + \mathbf{L}^{\mathrm{blk}}$	
$\underbrace{ \begin{bmatrix} [\times] \ [\times] \ [\times] \\ [\times] \ [\times] \ [\times] \end{bmatrix}_{\mathbf{X}} }_{\mathbf{A}^{\mathrm{blk}}} =$	$\underbrace{\begin{bmatrix} [X] \\ [X] \\ [X] \end{bmatrix}}_{\mathbf{D}^{\mathrm{blk}}}$	+	$\underbrace{\begin{bmatrix} [\times] \\ [\times] [\times] \end{bmatrix}}_{L^{\mathrm{blk}}}$	+	$\underbrace{\begin{bmatrix} & [\times] \ [\times] \\ & [\times] \end{bmatrix}}_{U^{\mathrm{blk}}}$

Stationary methods — Standard methods [3/3]

Convergence of stationary methods

- Convergence of and only if $\rho(\mathbf{B}) < 1$ with $\mathbf{B} = \mathbf{M}^{-1}\mathbf{N}$.
- ▶ If A is a strict diagonal dominant matrix (*i.e.* $|a_{ii}| > \sum_{i \neq i} |a_{ij}|, \forall i$)
 - Jacobi converges
 - GS converges
 - SOR converges if $0 < \omega \leq 1$
- Si A is a symmetric positive definite matrix (*i.e.* $A = A^*$ et $(Ax, x) > 0, \forall x \neq 0$)
 - Jacobi converges if $(2\mathbf{D} \mathbf{A})$ is a symmetric positive definite matrix
 - GS converges
 - SOR converges if and only if $0 < \omega < 2$

What we generally expect for the convergence rates:

Jacobi < Gauss-Seidel < SOR

By points < By blocks

Stationary methods — Algorithmic aspects [1/3]

 $\begin{array}{l} \mbox{Jacobi method} \quad (\mathbf{M}=\mathbf{D} \mbox{ and } \mathbf{N}=-(\mathbf{L}+\mathbf{U})) \\ \mathbf{x}^{(0)} \in \mathbb{R}^n \\ \mbox{for } \ell=0,1,\dots \mbox{ do} \\ \left| \ \mathbf{D} \mathbf{x}^{(\ell+1)} \ = \ \mathbf{b}-(\mathbf{L}+\mathbf{U}) \mathbf{x}^{(\ell)} \\ \mbox{end} \end{array} \right.$

Jacobi method (rewriting)

$$\begin{array}{l} x_i^{(0)} \in \mathbb{R} \text{ for } i = 1 \dots n \\ \text{for } \ell = 0, 1, \dots \text{ do} \\ & \left| \begin{array}{c} \text{for } i = 1 \dots n \text{ do} \\ \\ x_i^{(\ell+1)} = a_{ii}^{-1} \left(b_i - \sum_{i \neq j} a_{ij} x_j^{(\ell)} \right) \\ \\ \text{end} \end{array} \right|$$

Discussion

- Matrix-vector product with dense matrice $({\bf L}+{\bf U})$
- Linear combinations because D is diagonal
- The iterations of the interior loop are independent.

(BLAS in ∥) (Lin. combi. in ∥)

Stationary methods — Algorithmic aspects [2/3]

 $\begin{array}{ll} \mbox{Gauss-Seidel method} & (\mathbf{M}=\mathbf{L}+\mathbf{D} \mbox{ and } \mathbf{N}=-\mathbf{U}) \\ \mathbf{x}^{(0)} \in \mathbb{R}^n \\ \mbox{for } \ell=0,1,\dots \mbox{ do} \\ & \left| \ (\mathbf{D}+\mathbf{L})\mathbf{x}^{(\ell+1)} \ = \ \mathbf{b}-\mathbf{U}\mathbf{x}^{(\ell)} \\ \mbox{ end} \end{array} \right. \Leftrightarrow \mathrm{Dx}^{(\ell+1)} \ = \ \mathbf{b}-\mathrm{Lx}^{(\ell+1)}-\mathrm{Ux}^{(\ell)} \end{array}$

Gauss-Seidel method (rewritting)

$$\begin{array}{l} x_i^{(0)} \in \mathbb{R} \text{ for } i = 1 \dots n \\ \text{for } \ell = 0, 1, \dots \text{ do} \\ & \left| \begin{array}{c} \text{for } i = 1 \dots n \text{ do} \\ & \left| \begin{array}{c} x_i^{(\ell+1)} = a_{ii}^{-1} \left(b_i - \sum_{j < i} a_{ij} x_j^{(\ell+1)} - \sum_{i < j} a_{ij} x_j^{(\ell)} \right) \\ & \text{end} \end{array} \right| \\ \text{end} \end{array}$$

Discussion

– For each ℓ , solution of a inferior triangular system

(Descent in *I*)

- The interations of the interior loop are dependant: For each *i*, the solution is updated by using the last available values.

Stationary methods — Algorithmic aspects [3/3]

$$\begin{array}{l} \text{Block Jacobi/Gauss-Seidel methods (rewritting)} \\ \mathbf{x}_{I}^{(0)} \in \mathbb{R}^{n_{I}} \text{ for } I = 1 \dots n^{\text{blk}} \\ \text{for } \ell = 0, 1, \dots \text{ do} \\ \\ \left| \begin{array}{c} \text{for } I = 1 \dots n^{\text{blk}} \text{ do} \\ \\ \mathbf{A}_{II} \mathbf{x}_{I}^{(\ell+1)} = \mathbf{b}_{I} - \sum_{I \neq J} \mathbf{A}_{IJ} \mathbf{x}_{J}^{(\ell)} \\ \\ \mathbf{A}_{II} \mathbf{x}_{I}^{(\ell+1)} = \mathbf{b}_{I} - \sum_{J < I} \mathbf{A}_{IJ} \mathbf{x}_{J}^{(\ell+1)} - \sum_{I < J} \mathbf{A}_{IJ} \mathbf{x}_{J}^{(\ell)} \\ \\ \text{end} \\ \\ \end{array} \right| \begin{array}{c} \text{end} \\ \end{array}$$

Discussion

- Interior loop over n^{blk} blocks of $\mathbf{x}^{(\ell)}$, with $n^{\text{blk}} \leq n$.
- Jacobi: Matrix-vector product with dense matrix $(\mathbf{L}^{\mathrm{blk}} + \mathbf{U}^{\mathrm{blk}})$ (BLAS in //)
- Jacobi: Solution of a block diagonal system
- G.-S.: Solution of a block inferior triangular system

(Blocks solved in *I*)

(Descent in *I*)

Iterative methods for linear systems

Stationary methods

System arising from a finite difference discretization

Finite difference scheme — Description [1/3]

Definition of the problem

The field u(x, y) is governed by the Poisson equation on a square domain:

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x,y), & \text{ for } (x,y) \in \Omega =]a, b[\times]a, b[,\\ u = 0, & \text{ for } (x,y) \in \partial \Omega. \end{cases}$$

Discretization and numerical scheme

The problem is discretized on a regular grid:

- Discretization points: $(x_i, y_j) = (a + ih, a + jh)$ $(i, j = 0, \dots, n + 1)$
- Spatial step: h = (b a)/(n + 1)
- Approximate field: $u_{i,j} \approx u(x_i, y_j)$

We consider a standard finite difference scheme with a 5-point stencil:

$$\frac{1}{h^2} \left(u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{i,j} \right) = f_{i,j} \quad (i, j = 1, \dots, n)$$

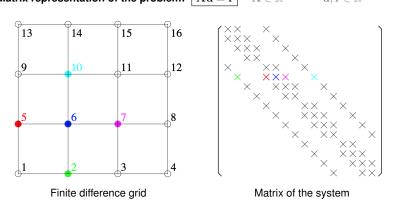
with $u_{i,j} = 0$ $(i \text{ and/or } j \in \{0, n+1\})$ and $f_{i,j} = f(x_i, y_j)$.

Asymptotic accuracy: $\mathcal{O}(h^2)$

Finite difference scheme — Description [2/3]

$$\begin{cases} \frac{1}{h^2} (u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{i,j}) = f_{i,j} & (i, j = 1, \dots, n) \\ u_{i,j} = 0 & (i \text{ and/or } j \in \{0, n+1\}) \end{cases}$$

Matrix representation of the problem: $\mathbf{A}\mathbf{u} = \mathbf{f}$ $\mathbf{A} \in \mathbb{R}^{n^2 \times n^2}$ $\mathbf{u}, \mathbf{f} \in \mathbb{R}^{n^2}$



Finite difference scheme — Description [3/3]

$$\begin{cases} \frac{1}{h^2} (u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{i,j}) = f_{i,j} & (i, j = 1, \dots, n) \\ u_{i,j} = 0 & (i \text{ and/or } j \in \{0, n+1\}) \end{cases}$$

Matrix representation of the problem: $| \mathbf{A} \mathbf{u} = \mathbf{f} |$

$$\mathbf{A} = \frac{1}{h^2} \begin{bmatrix} -4 & 1 & & 1 & & \\ 1 & -4 & 1 & & \ddots & \\ & \ddots & \ddots & \ddots & & 1 \\ & & & \ddots & \ddots & & 1 \\ 1 & & & \ddots & \ddots & \\ & \ddots & & 1 & -4 & 1 \\ & & 1 & & 1 & -4 \end{bmatrix} \quad \mathbf{u} = \begin{bmatrix} u_{1,1} \\ u_{1,2} \\ \vdots \\ u_{i,j} \\ \vdots \\ u_{n,n-1} \\ u_{n,n} \end{bmatrix} \quad \mathbf{f} = \begin{bmatrix} f_{1,1} \\ f_{1,2} \\ \vdots \\ f_{i,j} \\ \vdots \\ f_{n,n-1} \\ f_{n,n} \end{bmatrix}$$

Properties of A: Pentadiagonal matrix + Symmetric positive definite matrix

Finite difference scheme — Solution with Jacobi [1/3]

$$\frac{\mathbf{M}\mathbf{x}^{(\ell+1)} = \mathbf{N}\mathbf{x}^{(\ell)} + \mathbf{b}}{\text{with } \mathbf{A} = (\mathbf{M} - \mathbf{N}) = -\frac{4}{h^2}\mathbf{I} - \frac{1}{h^2} \begin{bmatrix} 0 & -1 & -1 & -1 & -1 \\ -1 & 0 & -1 & & \ddots & \\ & \ddots & \ddots & & & -1 \\ & & \ddots & \ddots & & & -1 \\ & & & \ddots & \ddots & & \\ & & & & -1 & 0 & -1 \\ & & & & -1 & 0 & -1 \\ & & & & -1 & 0 & -1 \end{bmatrix}$$

$$\label{eq:constraint} \begin{array}{c} \text{Sequential algorithm with Jacobi} \\ u_{i,j}^{(0)} \in \mathbb{R} \text{ for } i, j = 1 \dots n \\ \text{for } \ell = 0, 1, \dots \text{ do} \\ \left| \begin{array}{c} \text{for } i = 1, \dots, n \text{ do} \\ \left| \begin{array}{c} \text{for } j = 1, \dots, n \text{ do} \\ \left| \begin{array}{c} -\frac{4}{h^2} u_{i,j}^{(\ell+1)} = -\frac{1}{h^2} \left(u_{i+1,j}^{(\ell)} + u_{i-1,j}^{(\ell)} + u_{i,j+1}^{(\ell)} + u_{i,j-1}^{(\ell)} \right) + f_{i,j} \\ \text{end} \\ \text{end} \\ \text{end} \end{array} \right. \end{array} \right.$$

Finite difference scheme — Solution with Jacobi [2/3]

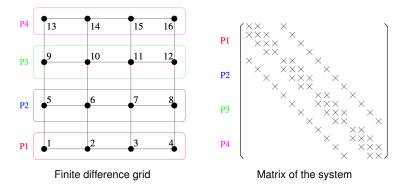
$$\frac{\mathbf{M}\mathbf{x}^{(\ell+1)} = \mathbf{N}\mathbf{x}^{(\ell)} + \mathbf{b}}{\mathbf{a}\mathsf{vec}} \mathbf{A} = (\mathbf{M} - \mathbf{N}) = -\frac{4}{h^2}\mathbf{I} - \frac{1}{h^2} \begin{bmatrix} 0 & -1 & -1 & -1 & -1 \\ -1 & 0 & -1 & & -1 \\ & \ddots & \ddots & & -1 \\ -1 & & \ddots & \ddots & & -1 \\ & & \ddots & \ddots & \ddots & & \\ & \ddots & & -1 & 0 & -1 \\ & & & -1 & & -1 & 0 \end{bmatrix}$$

$$\begin{array}{c} \text{Sequential algorithm with Jacobi (rewritting)} \\ u_{i,j}^{(0)} \in \mathbb{R} \text{ for } i, j = 1 \dots n \\ \text{for } \ell = 0, 1, \dots \text{ do} \\ \left| \begin{array}{c} \text{for } i = 1, \dots, n \text{ do} \\ \left| \begin{array}{c} \text{for } j = 1, \dots, n \text{ do} \\ \\ u_{i,j}^{(\ell+1)} = \frac{1}{4} \left(u_{i+1,j}^{(\ell)} + u_{i-1,j}^{(\ell)} + u_{i,j+1}^{(\ell)} + u_{i,j-1}^{(\ell)} \right) - \frac{h^2}{4} f_{i,j} \\ \\ \text{end} \\ \text{end} \\ \text{end} \\ \end{array} \right|$$

Finite difference scheme — Solution with Jacobi [3/3]

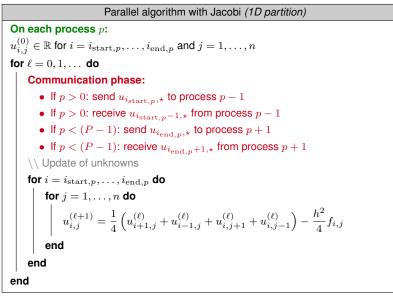
Parallelization

Domain partitioning and matrix partitioning:



- Analysis of communications:
 - · Each process has to communicate with both neighbors.
 - Sending/reception of *n* updated unknowns with each neighbor.
 - Only (local) point-to-point communications.

Finite difference scheme — Solution with Jacobi [4/3]



(In the communications, * indicates that the whole line is sent.)

Finite difference scheme — Solution with Gauss-Seidel [1/6]

$$\boxed{\mathbf{Mx}^{(\ell+1)} = \mathbf{Nx}^{(\ell)} + \mathbf{b}}_{\text{with } \mathbf{A} = (\mathbf{M} - \mathbf{N}) = \frac{1}{h^2} \begin{bmatrix} -4 & & & \\ 1 & -4 & & \\ & \ddots & & \\ & \ddots & & \\ 1 & & \ddots & \\ & \ddots & & 1 & -4 \\ & & 1 & -4 \end{bmatrix}} - \frac{1}{h^2} \begin{bmatrix} 0 & -1 & & -1 & \\ 0 & -1 & & \ddots & \\ & \ddots & & -1 \\ & & \ddots & & -1 \\ & & & \ddots & \\ & & & 0 & -1 \\ & & & & 0 \end{bmatrix}}$$

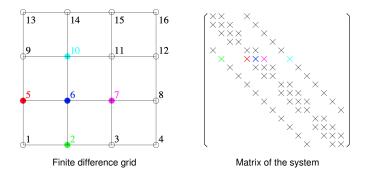
$$\label{eq:constraint} \begin{array}{c} \text{Sequential algorithm with Gauss-Seidel} \\ u_{i,j}^{(0)} \in \mathbb{R} \text{ for } i, j = 1 \dots n \\ \text{for } \ell = 0, 1, \dots \text{ do} \\ \left| \begin{array}{c} \text{for } i = 1, \dots, n \text{ do} \\ \left| \begin{array}{c} \text{for } j = 1, \dots, n \text{ do} \\ \left| \begin{array}{c} u_{i,j}^{(\ell+1)} = \frac{1}{4} \left(u_{i+1,j}^{(\ell)} + u_{i-1,j}^{(\ell+1)} + u_{i,j-1}^{(\ell)} \right) - \frac{h^2}{4} f_{i,j} \\ end \\ end \\ end \end{array} \right. \end{array} \right|$$

Finite difference scheme — Solution with Gauss-Seidel [2/6]

Parallelization of the scheme

The Gauss-Seidel method uses the last available values for the update.

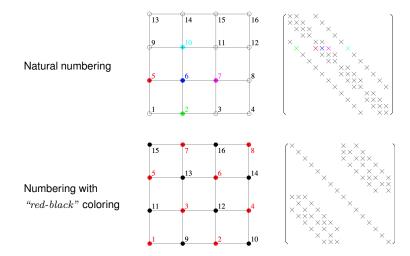
 \Rightarrow This procedure is (a priori) sequential



Idea: change the order of evaluation of the unknowns *(i.e. permutation of lines)* to make this procedure parallelizable

Finite difference scheme — Solution with Gauss-Seidel [3/6]

Parallelization of the scheme (with coloring)

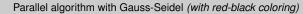


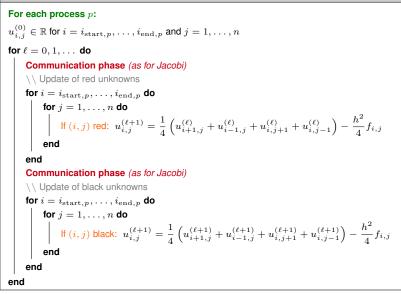
The unknowns associated to a given color can be updated in parallel.

Finite difference scheme — Solution with Gauss-Seidel [4/6]

Sequential algorithm with Gauss-Seidel (with red-black coloring) $u_{i,j}^{(0)} \in \mathbb{R}$ for $i, j = 1 \dots n$ for $\ell = 0, 1, ...$ do \\ Update of red unknowns for i = 1, ..., n do for j = 1, ..., n do $\left| \begin{array}{c} \text{If } (i,j) \text{ red: } u_{i,j}^{(\ell+1)} = \frac{1}{4} \left(u_{i+1,j}^{(\ell)} + u_{i-1,j}^{(\ell)} + u_{i,j+1}^{(\ell)} + u_{i,j-1}^{(\ell)} \right) - \frac{h^2}{4} f_{i,j} \right. \\ \end{array} \right.$ end end \\ Update of black unknowns for i = 1, ..., n do for j = 1, ..., n do If (i, j) black: $u_{i,j}^{(\ell+1)} = \frac{1}{4} \left(u_{i+1,j}^{(\ell+1)} + u_{i-1,j}^{(\ell+1)} + u_{i,j+1}^{(\ell+1)} + u_{i,j-1}^{(\ell+1)} \right) - \frac{h^2}{4} f_{i,j}$ end end end

Finite difference scheme — Solution with Gauss-Seidel [5/6]





Finite difference scheme — Solution with Gauss-Seidel [6/6]

Comments on parallelization strategies with coloring

- Basic idea:
 - Each color = Unknowns updated in parallel
 - Communication phase between each color
- Different numbering, so ...
 - Different algorithm, but still Gauss-Seidel
 - Different numerical solution, but scheme with the same properties
- Some extensions:
 - If larger stencil \rightarrow Coloring with more colors
 - If unstructured mesh \rightarrow Algorithms for automatic coloring

Ressources

- Méthodes Numériques : Algorithmes, analyse et applications
 A. Quarteroni, R. Sacco, F. Saleri (2007), Springer
- Calcul scientifique parallèle
 F. Magoulès et F.-X. Roux (2017), Dunod
- Calcul scientifique parallèle
 P. Ciarlet and E. Jamelot, polycopié de cours