
0

.

Parallel Scientific Computing
Course AMS301 — Fall 2023 — Lecture 4

Performance analysis of parallel programs
Dense linear algebra

Axel Modave

Performance analysis of parallel programs

Dense linear algebra

Performance analysis of parallel programs

For a given sequential program,

what speedup can be expected
when it is parallelized?

Qualities for an efficient parallel program
A good parallel program is a program that . . .

– minimizes the runtime,

– (generally) takes advantage of the compute power of the parallel machine,

– (generally) minimizes the communications and the waiting time.

Several tools to analyze the parallel performance
– Runtime, CPU time, computation time, communication time . . .

– Strong scaling and weak scaling,

– Speedup S and efficiency E.

1

Performance analysis — Time [1/2]

For a given parallel program, the runtime T is the time that elapses from the moment
that a parallel computation starts to the moment that the last processor finishes execution.

The runtime depends on the slowest processor:

T ≈ maxp
[
Tcomput|p + Tcomm|p + Twait|p

]
with, for each processor p = 1 . . . P ,

– Tcomput|p = time dedicated to computations
– Tcomm|p = time dedicated to communications
– Twait|p = waiting time

Reminder:

1 MPI_Barrier(MPI_COMM_WORLD);
2 double time1 = MPI_Wtime ();
3

4 // Lots of operations for all the processus
5

6 MPI_Barrier(MPI_COMM_WORLD);
7 double time2 = MPI_Wtime ();
8

9 if(myRank == 0) cout << "Duration: " << time2 -time1 << endl;

2

Performance analysis — Time [2/2]

For a given message, the communication time Tcomm is given by

Tcomm ≈ Tlat + L Tword

with

– Tlat = latency time (independent of the size of the message)
– Tword = time to transfer a word
– L = number of words in the message

Strategies
▶ One communication with a long message is generally . . .

better than several sequential communications with short messages
but worse than several parallel communications with short messages

▶ Communication times may be hidden behind computation times
by using non-blocking communications (when it is possible)

3

Performance analysis — Scalability analysis [1/2]

The scaling or scalability of a parallel program is the ability to preserve the same
efficiency when a larger number of processors P is used.

For a strong scaling analysis, P increases for a problem with a given size.
With P× more processors, can I solve a given problem P× more rapidly?

For a weak scaling analysis, P increases linearly with the size of the a problem.
With P× more processors, can I solve a P× larger problem with the same runtime?

In French:

– Scaling/Scalability analysis = Analyse de scalabilité ou de passage à l’échelle

– Strong scaling = Scalabilité forte

– Weak scaling = Scalabilité faible

4

Performance analysis — Speedup and efficiency

For a given parallel program, the speedup S is a number that measures the decrease
of the runtime when P processors are used instead of 1 processor.

S =
Tsequential

Tparallel
∈ [0, P]

For a given parallel program, the efficiency E is the ratio between the actual speedup
(Sactual) and the ideal speedup (Sideal).

E =
Sactual

Sideal
∈ [0, 1]

What speedup can be expected?
Illustration for a problem with different sizes:

P 1 2 4 8 16

Normal size S 1.0 1.9 3.1 4.8 6.2

E 1.0 0.95 0.78 0.60 0.32

Size × 2 S 1.0 1.9 3.6 6.5 10.8

E 1.0 0.95 0.90 0.81 0.68

Size × 4 S 1.0 1.9 3.8 7.5 14.2

E 1.0 0.95 0.95 0.94 0.89
5

Performance analysis — Scalability analysis [2/2]

The scaling or scalability of a parallel program is the ability to preserve the same
efficiency when a larger number of processors P is used.

For a strong scaling analysis, P increases for a problem with a given size.
With P× more processors, can I solve a given problem P× more rapidly?

For a weak scaling analysis, P increases linearly with the size of the a problem.
With P× more processors, can I solve a P× larger problem with the same runtime?

Presentation of weak/strong scaling analyses

Warning: the size of the problem is constant in the first case,
and it increases linearly with the number of processors in the second case.

6

Performance analysis — Amdahl’s law

Operations that must be performed sequentially prevent reaching the maximal speedup.
A more reasonable goal is given by Amdahl’s law.

Amdahl’s law

If β is the portion of the runtime of the sequential program
corresponding to operations that cannot be parallelized,

then the maximum speedup that can be reached is Smax = 1/β.

Illustration for a problem with β = 1/5 and Tsequential = 100 sec:

 Communications A1-1 2014/2015

Aspects théoriques et algorithmiques du calcul réparti 31

Modèle de performance (10/10)

•  Exemple avec a = 1/5 et T = 100 s en séquentiel :

0

20

40

60

80

100

120

1 2 4 16 256 infini
0

1

2

3

4

5

6

1 2 4 16 256 infini

Temps d’exécution en secondes Accélération

 Communications A1-1 2014/2015

Aspects théoriques et algorithmiques du calcul réparti 32

Gestion des communications (1/4)

•  Grille bidimensionnelle : parallélisation des communications
–  schéma à 5 points,

–  36 sous-domaines,

–  1 grille de processeurs et 1 sous-domaine par processeur.

 Communications A1-1 2014/2015

Aspects théoriques et algorithmiques du calcul réparti 31

Modèle de performance (10/10)

•  Exemple avec a = 1/5 et T = 100 s en séquentiel :

0

20

40

60

80

100

120

1 2 4 16 256 infini
0

1

2

3

4

5

6

1 2 4 16 256 infini

Temps d’exécution en secondes Accélération

 Communications A1-1 2014/2015

Aspects théoriques et algorithmiques du calcul réparti 32

Gestion des communications (1/4)

•  Grille bidimensionnelle : parallélisation des communications
–  schéma à 5 points,

–  36 sous-domaines,

–  1 grille de processeurs et 1 sous-domaine par processeur.

Parallel runtime Tparallel [sec] Speedup S

7

Performance analysis — Communications with a structured grid [1/4]

Here is a structured grid ...

Partition for this grid?

8

Performance analysis — Communications with a structured grid [2/4]

Several partitions are possibles ...

1D partition 2D partition

The communication pattern and the size of the messages are different.

Intuitively, the grid has been partitioned by using the method of coordinates.

9

Performance analysis — Communications with a structured grid [3/4]

We consider P -partitions of a 2D grid of size N ×N .

1D partition with P = 4 2D partition with P = 4

By subdomain ... 1D 2D
Amount of transferred data O(2N) O(4N/

√
P) O(N)

Number of operations O(N2/P) O(N2/P) O(N2)

Ratio data / operations O(2P/N) O(4
√
P/N)

10

Performance analysis — Communications with a structured grid [4/4]

We consider P -partitions of a 3D grid of size N ×N ×N .

By subdomain ... 1D 2D 3D
Amount of transferred data O(2N2) O(4N2/P 1/2) O(6N2/P 2/3) O(N2)

Number of operations O(N3/P) O(N3/P) O(N3/P) O(N3)

Ratio data / operations O(2P/N) O(4P 1/2/N) O(6P 1/3/N)

Discussion
▶ The amount of transferred data is proportional to the surface of the interfaces.

The number of operations is proportional to the volume of the subdomains.
▶ Increasing the number of subdomains decreases the number of operations by

subdomain, but it increases the importance of the transferts. (surface effect↗)
▶ For a large number of subdomains, it is interesting to use a partition with a high

dimensionality. (surface effect↘)

11

Performance analysis of parallel programs

Dense linear algebra

Linear algebra operations

Motivation

Linear algebra operations = Basic components for many algorithms
=⇒ Efficient parallel algorithms are required for these operations.

The algorithms depend on the structures of the matrices:
– Dense matrices without specific structures =⇒ BLAS
– Symmetric or hierarchical dense matrices (e.g. FFT, boundary elements, ...)
– Structured sparse matrix (e.g. resulting from a finite difference discretization)
– Unstructured sparse matrix (e.g. resulting from a finite element discretization)

BLAS (Basic Linear Algebra Subroutines)

The operations of dense linear algebra are categorized according to their complexity:
– O(N) operations: scalar product, addition of vectors BLAS 1
– O(N2) operations: matrix-vector product, addition of matrices BLAS 2
– O(N3) operations: matrix product BLAS 3

Optimized BLAS libraries are available for most environments (CPU/GPU).
They rely on partitions of the vectors/matrices into blocks.

Goal of this part: Parallel matrix product.

12

Parallel matrix product

We consider the matrix product: A = BC with B and C ∈ RN×N

Sequential algorithm
A ← 0

for i = 1, . . . , N do
for j = 1, . . . , N do

for k = 1, . . . , N do
Aij ← Aij + BikCkj

end

end

end

Analysis of the loops
– i-loop: iterations without dependence
– j-loop: iterations without dependence
– k-loop: iterations with dependence (−→ accumulation of computed values)

=⇒ Parallelization of the i-loop and/or the j-loop. Several choices are possible!

13

Parallel matrix product — Algorithms with 2 processes [1/2]

Parallel algorithm with 2 processes

On each process p = 1, 2:
Ap ← 0

istart,p ← (p− 1)N/2 + 1

iend,p ← (p− 1)N/2

for i = istart,p, . . . , iend,p do
for j = 1, . . . , N do

for k = 1, . . . , N do
Aij ← Aij + BikCkj

end

end

end

Discussion
▶ No communication between

the processes
▶ Each process p compute Ap,

store Bp and C entirely

14

Parallel matrix product — Algorithms with 2 processes [2/2]

Discussion
▶ All the blocks of C are required by all the processes, but not at the same time.

Initially, they are divided into the processes. Then, they are exchanged.
▶ At each step, each block is stored in only one in memory.

Perfect partition of data and computations!
15

Parallel matrix product — Algorithms with 4 processes [1/3]

Partition in blocks “lines” (straightforward extension of the case with 2 processes)

Discussion
▶ Each process computes N2/4 values of A (N/4 lines).
▶ At each step, the process p:

• computes one block of A by using one block “columns” of C.
• sends this block “columns” of C to proc. p− 1 (or to the last proc.)
• receives a new block “columns” of C from proc. p+ 1 (of to the first proc.)

▶ We need 4 steps, with 4 communication phases at each step (blocks of size N2/4)

Perfect division of computations and nearly-perfect division of data!

16

Parallel matrix product — Algorithms with 4 processes [2/3]

Partition in blocks “squares”

17

Parallel matrix product — Algorithms with 4 processes [3/3]

Partition in blocks “squares”

Discussion
▶ Each process computes N2/4 valued of A.
▶ Two steps are required, with 4 communications at each step (blocks of size N2/4)
▶ Perfect division of computations and nearly-perfect division of data!
▶ In total, 2× less communication phases than the previous version!

18

Parallel matrix product — Algorithms with P = N2
blk processes [1/2]

The matrices A, B and C are partitioned into Nblk ×Nblk blocks:A11 A12 A13

A21 A22 A23

A31 A32 A33

 =

B11 B12 B13

B21 B22 B23

B31 B32 B33


C11 C12 C13

C21 C22 C23

C31 C32 C33



First parallel algorithm with P = N2
blk processes

Data: each process knows B and C.

On each process (I, J) with I, J = 1, . . . , Nblk:
AIJ ← 0

for K = 1, . . . , Nblk do
AIJ ← AIJ +BIKCKJ

end

Result: each process (I, J) knows a block AIJ .

Discussion
▶ Matrices known by all the processes . . .

19

Parallel matrix product — Algorithms with P = N2
blk processes [2/2]

Second parallel algorithm with P = N2
blk processes

Data: each process (I, J) knows BIJ and CIJ .

On each process (I, J) with I, J = 1, . . . , Nblk:
AIJ ← 0

for K = 1, . . . , Nblk do
If K ̸= J : Receive BIK from process (I,K) and store in Btmp

If K ̸= I: Receive CKJ from process (K, J) and store in Ctmp

If K = J : Send BIJ to the other processes (I, •) and Btmp = BIJ

If K = I: Send CIJ to the other processes (•, J) and Ctmp = CIJ

AIJ ← AIJ +BtmpCtmp

end

Result: each process (I, J) knows a block AIJ .

Discussion
▶ Smaller memory requirement than for the previous approach.
▶ Need for Nblk steps in total, 2Nblk blocks are sent in total.
▶ Perfect division of computations and nearly-perfect division of data!

20

Summary

▶ Performance analysis of parallel programs
• Runtime, communication time, latency
• Strong/weak scaling
• Speedup, efficiency, Amdahl’s law
• Surface/Volume effect
• 1D/2D/3D partitions

▶ Dense linear algebra
• BLAS 1, 2 and 3
• Parallel algorithm for 2, 4 and N2

blk processes
• Approach by block
• Easy and efficient parallelism!

