Parallel Scientific Computing
Course AMS301 — Fall 2023 — Lecture 4

Performance analysis of parallel programs
Dense linear algebra

Axel Modave

Performance analysis of parallel programs
Dense linear algebra

Performance analysis of parallel programs

For a given sequential program,
what speedup can be expected
when it s parallelized?

Qualities for an efficient parallel program

A good parallel program is a program that ...
— minimizes the runtime,
— (generally) takes advantage of the compute power of the parallel machine,
— (generally) minimizes the communications and the waiting time.

Several tools to analyze the parallel performance
— Runtime, CPU time, computation time, communication time ...
— Strong scaling and weak scaling,
— Speedup S and efficiency E.

Performance analysis — Time [1/2]

For a given parallel program, the is the time that elapses from the moment
that a parallel computation starts to the moment that the last processor finishes execution.

The runtime depends on the slowest processor:

T ~ maxp [Tcomput\p + Teomm|p + Twait\p]

with, for each processorp =1...P,
— Teomput|p = time dedicated to computations
— Tcomm|p = time dedicated to communications
— Twait|lp = waiting time

Reminder:

MPI_Barrier (MPI_COMM_WORLD) ;
double timel = MPI_Wtime();

// Lots of operations for all the processus

MPI_Barrier (MPI_COMM_WORLD) ;
double time2 = MPI_Wtime();

if (myRank == 0) cout << "Duration: " << time2-timel << endl;

Performance analysis — Time [2/2]

For a given message, the is given by

‘ Teomm = Tiat + L Tiord ‘

with
= Tiat = (independent of the size of the message)
— Tword = time to transfer a word
— L = number of words in the message

Strategies

»> One communication with a long message is generally ...
better than several sequential communications with short messages
but worse than several parallel communications with short messages

» Communication times may be hidden behind computation times
by using non-blocking communications (when it is possible)

Performance analysis — Scalability analysis [1/2]

The or of a parallel program is the ability to preserve the same
efficiency when a larger number of processors P is used.

Fora analysis, P increases for a problem with a given size.
With Px more processors, can | solve a given problem P x more rapidly?

For a analysis, P increases linearly with the size of the a problem.
With Px more processors, can | solve a Px larger problem with the same runtime?

In French:
— Scaling/Scalability analysis = Analyse de scalabilité ou de passage a I'échelle
— Strong scaling = Scalabilité forte
— Weak scaling = Scalabilité faible

Performance analysis — Speedup and efficiency

For a given parallel program, the is a number that measures the decrease
of the runtime when P processors are used instead of 1 processor.

S = Tsequential c [0’ P]
Tparallel
For a given parallel program, the is the ratio between the actual speedup
(Sactua) @nd the ideal speedup (Sigeal)-
E = Sactual € [0,1]
Sideal

What speedup can be expected?
lllustration for a problem with different sizes:

P 1 2 4 8 16
Normal size | S | 1.0 1.9 3.1 4.8 6.2
E | 1.0 095 0.78 0.60 0.32
Size x 2 S|10 19 36 65 108
E | 1.0 095 0.90 0.81 0.68
Size x 4 S |10 1.9 3.8 7.5 14.2
E |10 095 095 094 0.89

Performance analysis — Scalability analysis [2/2]

The or of a parallel program is the ability to preserve the same
efficiency when a larger number of processors P is used.

For a analysis, P increases for a problem with a given size.
With Px more processors, can | solve a given problem P x more rapidly?

For a analysis, P increases linearly with the size of the a problem.
With Px more processors, can | solve a Px larger problem with the same runtime?

Presentation of weak/strong scaling analyses

Strong Scaling Weak Scaling
— |deal 1.0
a | T Measured > \
= =
3 g
a =1
w w
— Ideal
— Measured
Number of Processors Number of Processors

Warning: the size of the problem is constant in the first case,
and it increases linearly with the number of processors in the second case.

Performance analysis — Amdahl’s law

Operations that must be performed sequentially prevent reaching the maximal speedup.
A more reasonable goal is given by Amdahl’s law.

Amdahl’s law

If B is the portion of the runtime of the sequential program
corresponding to operations that cannot be parallelized,
then the maximum speedup that can be reached is Smax = 1/8.

llustration for a problem with 8 = 1/5 and Tsequentias = 100 sec:

120 6
100 5
80 44
60 3]
40 24
20 \\ 14
[] T . . . : 0~
1 2 4 16 256 infini 1 2 4 16 256 infini

Parallel runtime Tparaiiel [sec] Speedup S

Performance analysis — Communications with a structured grid

Here is a structured grid ...

Partition for this grid?

Performance analysis — Communications with a structured grid

Several partitions are possibles ...

1D partition 2D partition

The communication pattern and the size of the messages are different.
Intuitively, the grid has been partitioned by using the

Performance analysis — Communications with a structured grid

We consider P-partitions of a 2D grid of size N x N.

1D partition with P = 4 2D partition with P = 4
By subdomain ... 1D 2D

Amount of transferred data O(2N) O(4N//P) | O(N)
Number of operations O(N?/P) | O(N?/P) | O(N?)
Ratio data / operations O(2P/N) | O(4v/P/N)

Performance analysis — Communications with a structured grid

We consider P-partitions of a 3D grid of size N x N x N.

By subdomain ... 1D 2D 3D
Amount of transferred data | ©(2N?) O(4N?/PY2) | O(6N2/P?/3) | O(N?)
Number of operations O(N3/P) O(N3/P) O(N3/P) O(N3)
Ratio data / operations O((2P/N) | O(4PY2/N) O(6PY3/N)
Discussion
» The amount of transferred data is proportional to the of the interfaces.
The number of operations is proportional to the of the subdomains.

> Increasing the number of subdomains decreases the number of operations by
subdomain, but it increases the importance of the transferts. (surface effect /)

> For a large number of subdomains, it is interesting to use a partition with a high
dimensionality. (surface effect)

Performance analysis of parallel programs
Dense linear algebra

Linear algebra operations

Motivation

Linear algebra operations = Basic components for many algorithms
— Efficient parallel algorithms are required for these operations.

The algorithms depend on the structures of the matrices:

Dense matrices without specific structures = BLAS

Symmetric or hierarchical dense matrices (e.g. FFT, boundary elements, ...)
Structured sparse matrix (e.g. resulting from a finite difference discretization)
— Unstructured sparse matrix (e.g. resulting from a finite element discretization)

BLAS (Basic Linear Algebra Subroutines)

The operations of dense linear algebra are categorized according to their complexity:

— O(N) operations: scalar product, addition of vectors BLAS 1
— O(N?) operations: matrix-vector product, addition of matrices BLAS 2
— O(N3) operations: matrix product BLAS 3

Optimized BLAS libraries are available for most environments (CPU/GPU).
They rely on partitions of the vectors/matrices into blocks.

Goal of this part: Parallel matrix product.

Parallel matrix product

We consider the matrix product: with B and C € RV*N

Sequential algorithm

A+~ 0
fori=1,...,Ndo
forj=1,...,Ndo

fork=1,...,Ndo
| Aij < Aij + BinChj

end

end

end

Analysis of the loops
— i-loop: iterations without dependence s

— j-loop: iterations without dependence
— k-loop: iterations with dependence (— accumulation of computed values)

— Parallelization of the i-loop and/or the j-loop. Several choices are possible!

Parallel matrix product — Algorithms with 2 processes

Parallel algorithm with 2 processes

On each process p = 1, 2:
A, < O

istart,p < (P—1)N/2+1
fend,p — (p—1)N/2

fOr i = istart ps - - - » fond,p 4O Discussion
forj=1,...,Ndo »> No communication between
fork=1,...,Ndo the processes
| Aij + Ay + BiCuj » Each process p compute A,
end store B, and C entirely
end
end

Parallel matrix product — Algorithms with 2 processes

Etape 1
TR 7l I <o e
P=4 ‘ \ = | = g‘ E /\. R, « ‘ (n Qﬂ‘qml
J I [i = e
P 1 / Bl & Aq i

Eto@ lermédiac ey procmus séchagnt G o €0 (oo, poisk s part)

Etope 2
| A 1_;3] J) :C! »
p=4 | 5‘,,,’,1?,[”" \
—g LT jc'.'i'] g
F v i T R -
Discussion

> All the blocks of C are required by all the processes, but not at the same time.
Initially, they are divided into the processes. Then, they are exchanged.

> At each step, each block is stored in only one in memory.
Perfect partition of data and computations!

15

Parallel matrix product — Algorithms with 4 processes

Partition in blocks “lines” (straightforward extension of the case with 2 processes)

Epe 3. - Ehped: -

Discussion
» Each process computes N2 /4 values of A (N/4 lines).

> At each step, the process p:
® computes one block of A by using one block “columns” of C.
® sends this block “columns” of C to proc. p — 1 (or to the last proc.)
® receives a new block “columns” of C from proc. p + 1 (of to the first proc.)

> We need 4 steps, with 4 communication phases at each step (blocks of size N2 /4)

Perfect division of computations and nearly-perfect division of data!

Parallel matrix product — Algorithms with 4 processes

Partition in blocks “squares”
(3

o
P:L J
A __
- e
.1.“7’-7 [(L |
- Etape@

éf::{’c() B
B(‘o(;»uﬁs»:(wl't P(pu'ilf? Sor ol &

X Rlors d..-(;«rl;wl '}w(uc Solirned)

17

Parallel matrix product — Algorithms with 4 processes

Partition in blocks “squares”

ant: Chaswe procemus Stocle sop bloes | p=1 By Cu
7 P % gw Cn

P- u C
P Bugy

Torsfets: 8w ewoye e p=a 3 p=2
Cu envoye e P-4 2 p=3
B0 oneye du p=3 Jp=y
G ewoys de p=2 2P=4

:Amnn./'f') Necemasi

b ol ld

Ebspe. @

Tensfets: Riz onoyo de p=1 3 =4
Q, avoye o =8 & =
Cu envopde p-4 3 p=1
B2 envoye de P=4 2 p=3
Ekope () a

Discussion
» Each process computes N2 /4 valued of A.
> Two steps are required, with 4 communications at each step (blocks of size N2 /4)
» Perfect division of computations and nearly-perfect division of data!
> In total, 2x less communication phases than the previous version!

18

Parallel matrix product — Algorithms with P = N7, processes

The matrices A, B and C are partitioned into Ny, X Npx blocks:

Air A Agg Bi1 Biz2 Biz| |[Ci1 Ci2
Az1 Azx Az = [Bar Bz Baz| [C2a1 Ca2
Az1 Aszz Ass B31 Bs2z Bsz| |C31 Ca2

Cis
Cas
Css

First parallel algorithm with P = N,flk processes

Data: each process knows B and C.

On each process (I, J) with I, J =1,..., Ny:
A.[J ~— 0

for K =1,..., Ny do

| Ar; < Ar;+BixCky

end

Result: each process (I, J) knows a block At .

Discussion
> Matrices known by all the processes ...

Parallel matrix product — Algorithms with P = N7, processes

Second parallel algorithm with P = N2, processes

Data: each process (I, J) knows By ; and Cy .

On each process (I, J) with I, J =1,..., Ny

Ar; < 0

for K =1,..., Ny do
If K # J: Receive Brg from process (I, K) and store in Bimp
If K # I: Receive C ; from process (K, J) and store in Cimp
If K = J: Send By to the other processes (I, e) and Bimp = By
If K = I: Send Cy to the other processes (e, J) and Cimp = Cry
Ary « A+ BtmpCtmp

end

Result: each process (I, J) knows a block A ;.

Discussion
» Smaller memory requirement than for the previous approach.
> Need for Ny, steps in total, 2Ny, blocks are sent in total.
> Perfect division of computations and nearly-perfect division of data!

20

»> Performance analysis of parallel programs
® Runtime, communication time, latency
® Strong/weak scaling
Speedup, efficiency, Amdahl’s law
Surface/Volume effect
1D/2D/3D partitions

» Dense linear algebra

BLAS 1,2 and 3
Parallel algorithm for 2, 4 and Ng, processes
Approach by block

Easy and efficient parallelism!

