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Direct methods for linear systems
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Solution procedures for linear systems — Recap

Find x ∈ Rn such that Ax = b with A ∈ Rn×n and b ∈ Rn.

Solution procedures

▶ Direct methods: Factorization of A into triangular and diagonal matrices
(ex. A = LU) and solution of simpler problems.

Ax = b ⇔ LUx = b ⇔

∣∣∣∣∣ Ly = b

Ux = y

Advantages: exact solution known after a given number of operations
Difficulties: heavy computational cost (operations/memory), hard to parallelize

▶ Iterative methods: Iterative procedure to minimizing an error ∥x(ℓ) − xref∥
and/or a residual ∥Ax(ℓ) − b∥.∣∣∣∣∣∣

x(0) = Iter(0) (A,b)

x(ℓ+1) = Iter(ℓ+1)
(
x(ℓ),x(ℓ−1), . . . ,A,b

)
, pour ℓ ≥ 0

Advantages: limited cost per iteration (operations/memory), easy to parallelize
Difficulties: approximate solution, control of the convergence of the process
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Triangular systems — Approaches by points [1/2]

Definitions
▶ Lower triangular matrix: L ∈ Rn×n with Lij = 0 if i < j

▶ Upper triangular matrix: U ∈ Rn×n with Uij = 0 if i > j

L =

L11 0 0

L21 L22 0

L31 L32 L33

 U =

U11 U12 U13

0 U22 U23

0 0 U33


Properties
▶ The determinant of a triangular matrix is the product of the diagonal elements:

det(L) =
n∏

i=1

Lii det(U) =
n∏

i=1

Uii

▶ A triangular matrix is invertible if, and only if, its diagonal elements are nonzero.
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Triangular systems — Approaches by points [2/2]

Procedure to solve Lx = b (Forward substitution)

Data: L and b

Initialization: x← 0

for i = 1, . . . , n do

xi ←
[
bi −

∑i−1
j=1 Lijxj

]
/Lii

end

Procedure to solve Ux = b (Backward substitution)

Data: U et b
Initialization: x← 0

for i = n, . . . , 1 do

xi ←
[
bi −

∑n
j=i+1 Uijxj

]
/Uii

end

Algorithmic aspects
▶ Cost: n2 operations
▶ Weak parallelization (computation of sums in parallel)
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Triangular systems — Approaches by blocks [1/2]

Definitions
▶ Lower triangular matrix by blocks: L ∈ Rn×n with LIJ = 0 si I < J

▶ Upper triangular matrix by blocks: U ∈ Rn×n with UIJ = 0 si I > J

L =

L11 0 0

L21 L22 0

L31 L32 L33

 U =

U11 U12 U13

0 U22 U23

0 0 U33


The diagonal blocks are square. The other blocks may not be square.

Properties
▶ The determinant of a triangular matrix by blocks is the product of the determinants

of the diagonal blocks:

det(L) =
N∏

I=1

det(LII) det(U) =
N∏

I=1

det(UII)

▶ A diagonal or triangular matrix by blocks is invertible
if, and only if, the diagonal blocks are invertible.
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Triangular systems — Approaches by blocks [2/2]

Procedure to solve Lx = b (Forward substitution)

Data: L and b

Initialization: x← 0

for I = 1, . . . , N do

xI ← L−1
II

[
bI −

∑I−1
J=1 LIJxJ

]
end

Procedure to solve Ux = b (Backward substitution)

Data: U and b

Initialization: x← 0

for I = N, . . . , 1 do

xI ← U−1
II

[
bI −

∑N
J=I+1 UIJxJ

]
end

Algorithmic aspects
▶ Cost: N small system to solve and N(N − 1)/2 matrix-vector products
▶ Better for parallel computing (computation of matrix-vector products in parallel)
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General systems — Gaussian elimination [1/5]

Goal: Transform Ax = b into an equivalent system Ux = b′.
Procedure
▶ Initialization: 

A
(1)
11 A

(1)
12 · · · A

(1)
1n

A
(1)
21 A

(1)
22 · · · A

(1)
2n

...
...

...
A

(1)
n1 A

(1)
n2 · · · A

(1)
nn




x1

x2

...
xn

 =


b
(1)
1

b
(1)
2

...
b
(1)
n


▶ Iteration 1: 

A
(1)
11 A

(1)
12 · · · A

(1)
1n

0 A
(2)
22 · · · A

(2)
2n

...
...

...
0 A

(2)
n2 · · · A

(2)
nn




x1

x2

...
xn

 =


b
(1)
1

b
(2)
2

...
b
(2)
n


with

αi1 = A
(1)
i1 /A

(1)
11 i = 2, . . . , n (multipliers)

A
(2)
ij = A

(1)
ij − αi1A

(1)
1j i, j = 2, . . . , n

b
(2)
i = b

(1)
i − αi1b

(1)
1 i = 2, . . . , n
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General systems — Gaussian elimination [2/5]

Goal: Transform Ax = b into an equivalent system Ux = b′.
Procedure
▶ Iteration k:

A
(1)
11 A

(1)
12 · · · · · · · · · A

(1)
1n

0 A
(2)
22 A

(2)
2n

...
. . .

...
0 · · · 0 A

(k)
k+1,k+1 · · · A

(k)
k+1,n

...
...

...
...

0 · · · 0 A
(k)
n,k+1 · · · A

(k)
n,n





x1

x2

...
xk+1

...
xn


=



b
(1)
1

b
(2)
2

...
b
(k)
k+1

...
b
(k)
n


▶ Iteration n− 1: 

A
(1)
11 A

(1)
12 · · · · · · A

(1)
1n

0 A
(2)
22 A

(2)
2n

...
. . .

...

0
. . .

...
0 A

(n)
nn





x1

x2

...

...
xn


=



b
(1)
1

b
(2)
2

...

...
b
(n)
n
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General systems — Gaussian elimination [3/5]

Gaussian elimination

Data: A and b

Initialization: A(1) = A and b(1) = b

for k = 1, . . . , n− 1 do
for i = k + 1, . . . , n do

αik = A
(k)
ik /A

(k)
kk Si A(k)

kk ̸= 0!

A
(k+1)
ij = A

(k)
ij − αikA

(k)
kj (j = k + 1, . . . , n)

b
(k+1)
i = b

(k)
i − αikb

(k)
k

end

end

Gaussian elimination (Rewriting)

Data: A and b

for k = 1, . . . , n− 1 do
for i = k + 1, . . . , n do

α← Aik/Akk Si Akk ̸= 0!

Aij ← Aij − αAkj (j = k + 1, . . . , n)

Aik ← 0

bi ← bi − αbk

end
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General systems — Gaussian elimination [4/5]

A11 A12 A13

A21 A22 A23

A31 A32 A33


x1

x2

x3

 =

b1b2
b3

 ⇔

A
′
11 A′

12 A′
13

0 A′
22 A′

23

0 0 A′
33


x1

x2

x3

 =

b
′
1

b′2
b′3



Cost
▶ Gaussian elimination: 2(n− 1)n(n+ 1)/3 + n(n− 1) flop
▶ Backward substitution: n2 flop
▶ Largest term: 2/3 n3 flop

Conditions of use
▶ The method must be modified if, at one step, A(k)

kk = 0.
▶ The method can be used without modification . . .

• if A is diagonally dominant per line or per column
• if A is symmetric positive definite

▶ For the other cases⇒ Permutation of lines and/or columns
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General systems — Gaussian elimination [5/5]

Gaussian elimination with pivoting

Data: A and b

for k = 1, . . . , n− 1 do
Find r ∈ [k, . . . , n] such that |Ark| is max. (if maxr |Ark| = 0, then A not invert.)

Swap the rth and kth lines of A and b

for i = k + 1, . . . , n do

α← Aik/Akk

Aij ← Aij − αAkj (j = k + 1, . . . , n)

Aik ← 0

bi ← bi − αbk

end

end

Possible pivoting strategies
▶ Find r ∈ [k, . . . , n] such that |Akr| is maximum (partial pivoting)
▶ Find r ∈ [k, . . . , n] and s ∈ [k, . . . , n] such that |Ars| is maximum (total pivoting)

One can always find r ∈ [k, . . . , n] such that |Ark| > 0, otherwise A is not invertible.
⇒ The Gaussian elimination with pivoting is applicable to every invertible matrix!
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Generalities on matrix factorization [1/2]

Principle
▶ Factorize A into triangular matrices: × × ×

× × ×
× × ×


︸ ︷︷ ︸

A

=

 × 0 0

× × 0

× × ×


︸ ︷︷ ︸

L

 × × ×
0 × ×
0 0 ×


︸ ︷︷ ︸

U

▶ Rewrite the problem with triangular matrices:

Ax = b ⇔ LUx = b ⇔
{

Ly = b

Ux = y

and solve these problems with forward/back substitutions.

Comments
▶ A priori, same cost than Gaussian elimination.
▶ If the system must be solved with several right-hand sides,

only one factorization is necessary.
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Generalities on matrix factorization [2/2]

Several factorizations
If A is invertible and factorizable (to define later), one has:

A = L̃U (Gauss)

A = LŨ (Gauss)

A = L̃DŨ (Gauss-Jordan)

A = L̃DL̃
T (Crout) Si A symétrique.

A = LLT (Cholesky) Si A symétrique définie positive (SDP).

with

D – diagonal matrix
L – lower triangular matrix
L̃ – lower triangular matrix with unit diagonal
U – upper triangular matrix
Ũ – upper triangular matrix with unit diagonal
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Gaussian factorization (A = L̃U) [1/4]

Procedure
▶ Initialization:

A =


1 0 · · · 0

0 1 · · · 0

...
...

...
0 0 · · · 1




A

(1)
11 A

(1)
12 · · · A

(1)
1n

A
(1)
21 A

(1)
22 · · · A

(1)
2n

...
...

...
A

(1)
n1 A

(1)
n2 · · · A

(1)
nn


▶ Iteration 1:

A =



1 0 · · · · · · 0

α21 1 0

α31 0 1 0

...
...

. . .
...

αn1 0 · · · · · · 1





A
(1)
11 A

(1)
12 · · · A

(1)
1n

0 A
(2)
22 · · · A

(2)
2n

0 A
(2)
32 · · · A

(2)
3n

...
...

...
0 A

(2)
n2 · · · A

(2)
nn


with

αi1 = A
(1)
i1 /A

(1)
11 i = 2, . . . , n

A
(2)
ij = A

(1)
ij − αi1A

(1)
1j i, j = 2, . . . , n
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Gaussian factorization (A = L̃U) [2/4]

Procedure (continuation)

▶ Iteration k:

1 0 · · · · · · · · · 0

α21

. . . 0

...
. . . 1

...
...

... 1
...

...
...

. . .
...

αn1 . . . αnk 0 · · · 1





A
(1)
11 A

(1)
12 · · · · · · · · · A

(1)
1n

0 A
(2)
22 A

(2)
2n

...
. . .

...
0 · · · 0 A

(k)
k+1,k+1 · · · A

(k)
k+1,n

...
...

...
...

0 · · · 0 A
(k)
n,k+1 · · · A(k)

nn


▶ Iteration n− 1:

1 0 · · · · · · 0

α21 1 0

...
. . .

. . .
...

...
. . . 1

...
αn1 . . . . . . αn(n−1) 1





A
(1)
11 A

(1)
12 · · · · · · A

(1)
1n

0 A
(2)
22 A

(2)
2n

...
. . .

...

0
. . .

...
0 A

(n)
nn
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Gaussian factorization (A = L̃U) [3/4]

Gaussian factorization
Data: A
Initialization: L̃ = I and U = A

for k = 1, . . . , n− 1 do
for i = k + 1, . . . , n do

L̃ik ← Uik/Ukk Si Ukk ̸= 0 !

Uij ← Uij − L̃ikUkj (j = k + 1 . . . n)

Uik ← 0

end

end

Gaussian factorization (Rewriting)
Data: A
for k = 1, . . . , n− 1 do

for i = k + 1, . . . , n do

Aik ← Aik/Akk Si Akk ̸= 0 !

Aij ← Aij − AikAkj (j = k + 1 . . . n)

end

end
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Gaussian factorization (A = L̃U) [4/4]

Theorem – Unicity of the Gaussian factorization (A = L̃U)

The Gaussian factorization, if it exists, is unique.

Theorem – Existence of the Gaussian factorization (A = L̃U) (not necessary)

Every matrix that is symmetric positive definite (SPD) is factorizable.

Theorem – Existence of the Gaussian factorization after permutation (PA = L̃U)

For every invertible matrix, there exists a sequence of elementary permutations such
that the permuted matrix admits a Gaussian factorization.

Permutation matrix
▶ An elementary permutation matrix P(i1,i2) is a matrix

which the application on a matrix A permutes the lines i1 and i2:
0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1



A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 =


A31 A32 A33 A34

A21 A22 A23 A24

A11 A12 A13 A14

A41 A42 A43 A44


▶ The permutation matrix P(i1,i2) is obtained by swapping the lines i1 and i2 and

the columns i1 and i2 from the identity matrix.
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Solution after factorization

Gaussian factorization (Rewriting)

Data: A
for k = 1, . . . , n− 1 do

for i = k + 1, . . . , n do

Aik ← Aik/Akk Si Akk ̸= 0 !

Aij ← Aij −AikAkj (j = k + 1 . . . n)

end

end

Cost of the entire solution procedure
• Gaussian or Gauss-Jordan factorization: 2/3 n3 operations
• Crout or Cholesky factorization: 1/3 n3 operations
• Forward and back substitution: 2 n2 operations
• Additional operations with pivoting strategies

Parallelization
• Parallelization not easy for problems with dense matrices
• Strategies are possible with blocks approaches.
• Strategies are possible with sparse matrices.
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Summary

▶ Triangular systems
• Simple computational procedures, but not suited for parallel computing!
• Computational cost:

– By points: n2 scalar operations
– By blocks: N small systems to solve and O(N2) matrix-vector products

• Parall. comp.: by-block strategy (dense mat.) or ad-hoc strategy (sparse mat.)
▶ General systems

• Approaches:
– Gaussian elimination⇒ Gives the solution for a given vector b
– LU factorization + Two triangular systems to solve
⇒ Factorization computed once and used for any vector b

• For any invertible matrix A, ∃ permutation matrix P such that PA = L̃U

• Different factorizations: L̃U, L̃DŨ (Gen), L̃DL̃
⊤ (Sym), LL⊤ (SDP)

• Computational cost: O(n3) operations
• Parall. comp.: by-block strategy (dense mat.) or ad-hoc strategy (sparse mat.)



Resources
▶ Méthodes Numériques : Algorithmes, analyse et applications

A. Quarteroni, R. Sacco, F. Saleri (2007), Springer
▶ Calcul scientifique parallèle

F. Magoulès et F.-X. Roux (2017), Dunod
▶ Calcul scientifique parallèle

P. Ciarlet et E. Jamelot, polycopié de cours


