
0

.

Parallel Scientific Computing
Course AMS301 — Fall 2023 — Lecture 5

Direct methods for linear systems

Axel Modave

Solution procedures for linear systems — Recap

Find x ∈ Rn such that Ax = b with A ∈ Rn×n and b ∈ Rn.

Solution procedures

▶ Direct methods: Factorization of A into triangular and diagonal matrices
(ex. A = LU) and solution of simpler problems.

Ax = b ⇔ LUx = b ⇔

∣∣∣∣∣ Ly = b

Ux = y

Advantages: exact solution known after a given number of operations
Difficulties: heavy computational cost (operations/memory), hard to parallelize

▶ Iterative methods: Iterative procedure to minimizing an error ∥x(ℓ) − xref∥
and/or a residual ∥Ax(ℓ) − b∥.∣∣∣∣∣∣

x(0) = Iter(0) (A,b)

x(ℓ+1) = Iter(ℓ+1)
(
x(ℓ),x(ℓ−1), . . . ,A,b

)
, pour ℓ ≥ 0

Advantages: limited cost per iteration (operations/memory), easy to parallelize
Difficulties: approximate solution, control of the convergence of the process

1

Direct methods for linear systems
Solution of triangular systems

Gaussian elimination

Matrix factorization

Triangular systems — Approaches by points [1/2]

Definitions
▶ Lower triangular matrix: L ∈ Rn×n with Lij = 0 if i < j

▶ Upper triangular matrix: U ∈ Rn×n with Uij = 0 if i > j

L =

L11 0 0

L21 L22 0

L31 L32 L33

 U =

U11 U12 U13

0 U22 U23

0 0 U33

Properties
▶ The determinant of a triangular matrix is the product of the diagonal elements:

det(L) =
n∏

i=1

Lii det(U) =
n∏

i=1

Uii

▶ A triangular matrix is invertible if, and only if, its diagonal elements are nonzero.

2

Triangular systems — Approaches by points [2/2]

Procedure to solve Lx = b (Forward substitution)

Data: L and b

Initialization: x← 0

for i = 1, . . . , n do

xi ←
[
bi −

∑i−1
j=1 Lijxj

]
/Lii

end

Procedure to solve Ux = b (Backward substitution)

Data: U et b
Initialization: x← 0

for i = n, . . . , 1 do

xi ←
[
bi −

∑n
j=i+1 Uijxj

]
/Uii

end

Algorithmic aspects
▶ Cost: n2 operations
▶ Weak parallelization (computation of sums in parallel)

3

Triangular systems — Approaches by blocks [1/2]

Definitions
▶ Lower triangular matrix by blocks: L ∈ Rn×n with LIJ = 0 si I < J

▶ Upper triangular matrix by blocks: U ∈ Rn×n with UIJ = 0 si I > J

L =

L11 0 0

L21 L22 0

L31 L32 L33

 U =

U11 U12 U13

0 U22 U23

0 0 U33

The diagonal blocks are square. The other blocks may not be square.

Properties
▶ The determinant of a triangular matrix by blocks is the product of the determinants

of the diagonal blocks:

det(L) =
N∏

I=1

det(LII) det(U) =
N∏

I=1

det(UII)

▶ A diagonal or triangular matrix by blocks is invertible
if, and only if, the diagonal blocks are invertible.

4

Triangular systems — Approaches by blocks [2/2]

Procedure to solve Lx = b (Forward substitution)

Data: L and b

Initialization: x← 0

for I = 1, . . . , N do

xI ← L−1
II

[
bI −

∑I−1
J=1 LIJxJ

]
end

Procedure to solve Ux = b (Backward substitution)

Data: U and b

Initialization: x← 0

for I = N, . . . , 1 do

xI ← U−1
II

[
bI −

∑N
J=I+1 UIJxJ

]
end

Algorithmic aspects
▶ Cost: N small system to solve and N(N − 1)/2 matrix-vector products
▶ Better for parallel computing (computation of matrix-vector products in parallel)

5

Direct methods for linear systems
Solution of triangular systems

Gaussian elimination

Matrix factorization

General systems — Gaussian elimination [1/5]

Goal: Transform Ax = b into an equivalent system Ux = b′.
Procedure
▶ Initialization:

A
(1)
11 A

(1)
12 · · · A

(1)
1n

A
(1)
21 A

(1)
22 · · · A

(1)
2n

...
...

...
A

(1)
n1 A

(1)
n2 · · · A

(1)
nn

x1

x2

...
xn

 =

b
(1)
1

b
(1)
2

...
b
(1)
n

▶ Iteration 1:

A
(1)
11 A

(1)
12 · · · A

(1)
1n

0 A
(2)
22 · · · A

(2)
2n

...
...

...
0 A

(2)
n2 · · · A

(2)
nn

x1

x2

...
xn

 =

b
(1)
1

b
(2)
2

...
b
(2)
n

with

αi1 = A
(1)
i1 /A

(1)
11 i = 2, . . . , n (multipliers)

A
(2)
ij = A

(1)
ij − αi1A

(1)
1j i, j = 2, . . . , n

b
(2)
i = b

(1)
i − αi1b

(1)
1 i = 2, . . . , n

6

General systems — Gaussian elimination [2/5]

Goal: Transform Ax = b into an equivalent system Ux = b′.
Procedure
▶ Iteration k:

A
(1)
11 A

(1)
12 · · · · · · · · · A

(1)
1n

0 A
(2)
22 A

(2)
2n

...
. . .

...
0 · · · 0 A

(k)
k+1,k+1 · · · A

(k)
k+1,n

...
...

...
...

0 · · · 0 A
(k)
n,k+1 · · · A

(k)
n,n

x1

x2

...
xk+1

...
xn

=

b
(1)
1

b
(2)
2

...
b
(k)
k+1

...
b
(k)
n

▶ Iteration n− 1:

A
(1)
11 A

(1)
12 · · · · · · A

(1)
1n

0 A
(2)
22 A

(2)
2n

...
. . .

...

0
. . .

...
0 A

(n)
nn

x1

x2

...

...
xn

=

b
(1)
1

b
(2)
2

...

...
b
(n)
n

7

General systems — Gaussian elimination [3/5]

Gaussian elimination

Data: A and b

Initialization: A(1) = A and b(1) = b

for k = 1, . . . , n− 1 do
for i = k + 1, . . . , n do

αik = A
(k)
ik /A

(k)
kk Si A(k)

kk ̸= 0!

A
(k+1)
ij = A

(k)
ij − αikA

(k)
kj (j = k + 1, . . . , n)

b
(k+1)
i = b

(k)
i − αikb

(k)
k

end

end

Gaussian elimination (Rewriting)

Data: A and b

for k = 1, . . . , n− 1 do
for i = k + 1, . . . , n do

α← Aik/Akk Si Akk ̸= 0!

Aij ← Aij − αAkj (j = k + 1, . . . , n)

Aik ← 0

bi ← bi − αbk

end

end 8

General systems — Gaussian elimination [4/5]

A11 A12 A13

A21 A22 A23

A31 A32 A33

x1

x2

x3

 =

b1b2
b3

 ⇔

A
′
11 A′

12 A′
13

0 A′
22 A′

23

0 0 A′
33

x1

x2

x3

 =

b
′
1

b′2
b′3

Cost
▶ Gaussian elimination: 2(n− 1)n(n+ 1)/3 + n(n− 1) flop
▶ Backward substitution: n2 flop
▶ Largest term: 2/3 n3 flop

Conditions of use
▶ The method must be modified if, at one step, A(k)

kk = 0.
▶ The method can be used without modification . . .

• if A is diagonally dominant per line or per column
• if A is symmetric positive definite

▶ For the other cases⇒ Permutation of lines and/or columns

9

General systems — Gaussian elimination [5/5]

Gaussian elimination with pivoting

Data: A and b

for k = 1, . . . , n− 1 do
Find r ∈ [k, . . . , n] such that |Ark| is max. (if maxr |Ark| = 0, then A not invert.)

Swap the rth and kth lines of A and b

for i = k + 1, . . . , n do

α← Aik/Akk

Aij ← Aij − αAkj (j = k + 1, . . . , n)

Aik ← 0

bi ← bi − αbk

end

end

Possible pivoting strategies
▶ Find r ∈ [k, . . . , n] such that |Akr| is maximum (partial pivoting)
▶ Find r ∈ [k, . . . , n] and s ∈ [k, . . . , n] such that |Ars| is maximum (total pivoting)

One can always find r ∈ [k, . . . , n] such that |Ark| > 0, otherwise A is not invertible.
⇒ The Gaussian elimination with pivoting is applicable to every invertible matrix!

10

Direct methods for linear systems
Solution of triangular systems

Gaussian elimination

Matrix factorization

Generalities on matrix factorization [1/2]

Principle
▶ Factorize A into triangular matrices: × × ×

× × ×
× × ×

︸ ︷︷ ︸

A

=

 × 0 0

× × 0

× × ×

︸ ︷︷ ︸

L

 × × ×
0 × ×
0 0 ×

︸ ︷︷ ︸

U

▶ Rewrite the problem with triangular matrices:

Ax = b ⇔ LUx = b ⇔
{

Ly = b

Ux = y

and solve these problems with forward/back substitutions.

Comments
▶ A priori, same cost than Gaussian elimination.
▶ If the system must be solved with several right-hand sides,

only one factorization is necessary.

11

Generalities on matrix factorization [2/2]

Several factorizations
If A is invertible and factorizable (to define later), one has:

A = L̃U (Gauss)

A = LŨ (Gauss)

A = L̃DŨ (Gauss-Jordan)

A = L̃DL̃
T (Crout) Si A symétrique.

A = LLT (Cholesky) Si A symétrique définie positive (SDP).

with

D – diagonal matrix
L – lower triangular matrix
L̃ – lower triangular matrix with unit diagonal
U – upper triangular matrix
Ũ – upper triangular matrix with unit diagonal

12

Gaussian factorization (A = L̃U) [1/4]

Procedure
▶ Initialization:

A =

1 0 · · · 0

0 1 · · · 0

...
...

...
0 0 · · · 1

A

(1)
11 A

(1)
12 · · · A

(1)
1n

A
(1)
21 A

(1)
22 · · · A

(1)
2n

...
...

...
A

(1)
n1 A

(1)
n2 · · · A

(1)
nn

▶ Iteration 1:

A =

1 0 · · · · · · 0

α21 1 0

α31 0 1 0

...
...

. . .
...

αn1 0 · · · · · · 1

A
(1)
11 A

(1)
12 · · · A

(1)
1n

0 A
(2)
22 · · · A

(2)
2n

0 A
(2)
32 · · · A

(2)
3n

...
...

...
0 A

(2)
n2 · · · A

(2)
nn

with

αi1 = A
(1)
i1 /A

(1)
11 i = 2, . . . , n

A
(2)
ij = A

(1)
ij − αi1A

(1)
1j i, j = 2, . . . , n

13

Gaussian factorization (A = L̃U) [2/4]

Procedure (continuation)

▶ Iteration k:

1 0 · · · · · · · · · 0

α21

. . . 0

...
. . . 1

...
...

... 1
...

...
...

. . .
...

αn1 . . . αnk 0 · · · 1

A
(1)
11 A

(1)
12 · · · · · · · · · A

(1)
1n

0 A
(2)
22 A

(2)
2n

...
. . .

...
0 · · · 0 A

(k)
k+1,k+1 · · · A

(k)
k+1,n

...
...

...
...

0 · · · 0 A
(k)
n,k+1 · · · A(k)

nn

▶ Iteration n− 1:

1 0 · · · · · · 0

α21 1 0

...
. . .

. . .
...

...
. . . 1

...
αn1 αn(n−1) 1

A
(1)
11 A

(1)
12 · · · · · · A

(1)
1n

0 A
(2)
22 A

(2)
2n

...
. . .

...

0
. . .

...
0 A

(n)
nn

14

Gaussian factorization (A = L̃U) [3/4]

Gaussian factorization
Data: A
Initialization: L̃ = I and U = A

for k = 1, . . . , n− 1 do
for i = k + 1, . . . , n do

L̃ik ← Uik/Ukk Si Ukk ̸= 0 !

Uij ← Uij − L̃ikUkj (j = k + 1 . . . n)

Uik ← 0

end

end

Gaussian factorization (Rewriting)
Data: A
for k = 1, . . . , n− 1 do

for i = k + 1, . . . , n do

Aik ← Aik/Akk Si Akk ̸= 0 !

Aij ← Aij − AikAkj (j = k + 1 . . . n)

end

end

15

Gaussian factorization (A = L̃U) [4/4]

Theorem – Unicity of the Gaussian factorization (A = L̃U)

The Gaussian factorization, if it exists, is unique.

Theorem – Existence of the Gaussian factorization (A = L̃U) (not necessary)

Every matrix that is symmetric positive definite (SPD) is factorizable.

Theorem – Existence of the Gaussian factorization after permutation (PA = L̃U)

For every invertible matrix, there exists a sequence of elementary permutations such
that the permuted matrix admits a Gaussian factorization.

Permutation matrix
▶ An elementary permutation matrix P(i1,i2) is a matrix

which the application on a matrix A permutes the lines i1 and i2:
0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

 =

A31 A32 A33 A34

A21 A22 A23 A24

A11 A12 A13 A14

A41 A42 A43 A44

▶ The permutation matrix P(i1,i2) is obtained by swapping the lines i1 and i2 and

the columns i1 and i2 from the identity matrix.

16

Solution after factorization

Gaussian factorization (Rewriting)

Data: A
for k = 1, . . . , n− 1 do

for i = k + 1, . . . , n do

Aik ← Aik/Akk Si Akk ̸= 0 !

Aij ← Aij −AikAkj (j = k + 1 . . . n)

end

end

Cost of the entire solution procedure
• Gaussian or Gauss-Jordan factorization: 2/3 n3 operations
• Crout or Cholesky factorization: 1/3 n3 operations
• Forward and back substitution: 2 n2 operations
• Additional operations with pivoting strategies

Parallelization
• Parallelization not easy for problems with dense matrices
• Strategies are possible with blocks approaches.
• Strategies are possible with sparse matrices.

17

Summary

▶ Triangular systems
• Simple computational procedures, but not suited for parallel computing!
• Computational cost:

– By points: n2 scalar operations
– By blocks: N small systems to solve and O(N2) matrix-vector products

• Parall. comp.: by-block strategy (dense mat.) or ad-hoc strategy (sparse mat.)
▶ General systems

• Approaches:
– Gaussian elimination⇒ Gives the solution for a given vector b
– LU factorization + Two triangular systems to solve
⇒ Factorization computed once and used for any vector b

• For any invertible matrix A, ∃ permutation matrix P such that PA = L̃U

• Different factorizations: L̃U, L̃DŨ (Gen), L̃DL̃
⊤ (Sym), LL⊤ (SDP)

• Computational cost: O(n3) operations
• Parall. comp.: by-block strategy (dense mat.) or ad-hoc strategy (sparse mat.)

Resources
▶ Méthodes Numériques : Algorithmes, analyse et applications

A. Quarteroni, R. Sacco, F. Saleri (2007), Springer
▶ Calcul scientifique parallèle

F. Magoulès et F.-X. Roux (2017), Dunod
▶ Calcul scientifique parallèle

P. Ciarlet et E. Jamelot, polycopié de cours

