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Iterative methods for linear systems (2)
Nonstationary iterative methods

Axel Modave



Solution procedures for linear systems — Recap [1/3]

Find x ∈ Rn such that Ax = b with A ∈ Rn×n and b ∈ Rn.

Solution procedures

▶ Direct methods: Factorization of A into triangular and diagonal matrices
(ex. A = LU) and solution of simpler problems.

Ax = b ⇔ LUx = b ⇔

∣∣∣∣∣ Ly = b

Ux = y

Advantages: exact solution known after a given number of operations
Difficulties: heavy computational cost (operations/memory), hard to parallelize

▶ Iterative methods: Iterative procedure to minimizing an error ∥x(ℓ) − xref∥
and/or a residual ∥Ax(ℓ) − b∥.∣∣∣∣∣∣

x(0) = Iter(0) (A,b)

x(ℓ+1) = Iter(ℓ+1)
(
x(ℓ),x(ℓ−1), . . . ,A,b

)
, for ℓ ≥ 0

Advantages: limited cost per iteration (operations/memory), easy to parallelize
Difficulties: approximate solution, control of the convergence of the process
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Solution procedures for linear systems — Recap [2/3]

Find x ∈ Rn such that Ax = b with A ∈ Rn×n and b ∈ Rn.

▶ Iterative methods:∣∣∣∣∣∣
x(0) = Iter(0) (A,b)

x(ℓ+1) = Iter(ℓ+1)
(
x(ℓ),x(ℓ−1), . . . ,A,b

)
, for ℓ ≥ 0

The order of the method is the numb. of steps which the current iter. depends on.

Stationary method if the functions Iter(ℓ) are indep. of ℓ, otherwise nonstationary

Linear method if the functions Iter(ℓ) are linear, otherwise nonlinear

In a previous session, we considered statio. linear iterative schemes of first order:∣∣∣∣∣ x(0) given

x(ℓ+1) = Bx(ℓ) + f , ℓ ≥ 0

where B ∈ Rn×n is the iteration matrix and f ∈ Rn depends on b.
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Solution of linear systems — Recap [3/3]

Stationary linear iterative method of first order

Regular decomposition: A = M−N where M ∈ Rn×n is inversible.

Stationary method

x(0) ∈ Cn

for ℓ = 0, 1, . . . do

Mx(ℓ+1) = Nx(ℓ) + b
i.e. x(ℓ+1) = Bx(ℓ) + f

with B = M−1N and f = M−1b
end

Choices
By points By blocks

Jacobi M = D M = Dblk

Gauss-Seidel M = D+ L M = Dblk + Lblk

 × × ×
× × ×
× × ×


︸ ︷︷ ︸

A

=

 ×
×

×


︸ ︷︷ ︸

D

+

 ◦
× ◦
× × ◦


︸ ︷︷ ︸

L

+

 ◦ × ×
◦ ×

◦


︸ ︷︷ ︸

U
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Solution of linear systems — Nonstationary methods

Find x ∈ Rn such that Ax = b with A ∈ Rn×n and b ∈ Rn.

In a previous session, we considered statio. linear iterative schemes of first order:∣∣∣∣∣ x(0) given

x(ℓ+1) = Bx(ℓ) + f , ℓ ≥ 0

where B ∈ Rn×n is the iteration matrix and f ∈ Rn depends on b.

In this session, we consider nonstationary linear iterative schemes of the form:∣∣∣∣∣ x(0) given

x(ℓ+1) = x(ℓ) + α(ℓ)p(ℓ), ℓ ≥ 0

with the step α(ℓ) and the direction p(ℓ) must be chosen.
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Nonstationary iterative methods for linear systems
Conjugate gradient method

Interlude on Krylov spaces

Few words about GMRES



Conjugate gradient method — Principle [1/2]

Find x ∈ Rn such that Ax = b with A ∈ Rn×n and b ∈ Rn,
where A is symmetric positive definite (SPD).

A = A⊤ and (Av,v) > 0, ∀v ∈ Rn\{0}

Link with a minimization problem

We consider the following minimization problem:

Find x ∈ Rn that minimizes the functional J(v) =
1

2

(
Av,v

)
−

(
b,v

)
.

If A is an SPD matrix:
▶ The functional J(v) is strictly convex on Rn.
▶ The functional J(v) has a unique minium.
▶ The minimum of J(v), denoted vmin, is such that ∇J |vmin

= 0 and Avmin = b.

Solving the minimization problem is equivalent to solving the system!
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Conjugate gradient method — Principle [2/2]

General idea
▶ Starting from a vector x(0), we compute vectors x(1), x(2), . . . such that J is min.
▶ At each iteration, we take one step α(ℓ) along direction p(ℓ):

x(ℓ+1) = x(ℓ) + α(ℓ)p(ℓ) = x(0) +
ℓ∑

i=0

α(i)p(i)

Illustration for a problem with n = 2:

(Source: Wikipedia)
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Conjugate gradient method — Construction [1/3]

Steepest descent method
At each step:
▶ Choice of direction p(ℓ) −→ We take the gradient: p(ℓ) = −∇J(x(ℓ))
▶ Choice of step α(ℓ) −→ We take the one that minimizes J(x(ℓ) + α(ℓ)p(ℓ)).

We have J(v) = 1
2

(
Av,v

)
−

(
b,v

)
∇J(v) = Av − b (Then, p(ℓ) = b−Ax(ℓ), which is the residual!)
minα J(x(ℓ) + αp(ℓ)) ⇔ α = (b−Ax(ℓ),p(ℓ))

/
(Ap(ℓ),p(ℓ))

Steepest descent method

x(0) ∈ Rn

p(0) = b−Ax(0)

for ℓ = 0, 1, . . . do

α(ℓ) =
(
p(ℓ),p(ℓ)

)/(
Ap(ℓ),p(ℓ)

)
Comput. of step

x(ℓ+1) = x(ℓ) + α(ℓ)p(ℓ) Update

p(ℓ+1) = b−Ax(ℓ+1) Comput. of direction/residual

if
∥∥p(ℓ+1)

∥∥ ≤ ε
∥∥p(0)

∥∥ then break

end
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Conjugate gradient method — Construction [2/3]

Conjugate gradient method

▶ We take
{
p(ℓ)

}
ℓ=0...n−1

such that they form a basis of Rn.
We take a A−orthogonal basis, i.e. orthogonal with the scalar product (A·, ·):(

Ap(i),p(j)
)
= 0, ∀i ̸= j

▶ We take
{
α(ℓ)

}
ℓ=0...n−1

such that

x = x(0) +

n−1∑
i=0

α(i)p(i)

where x is the solution of the problem.

Conjugate gradient method

x(0) ∈ Rn

p(0) = b−Ax(0)

for ℓ = 0, 1, . . . do
...
x(ℓ+1) = x(ℓ) + α(ℓ)p(ℓ) = x(0) +

∑ℓ
i=0 α

(i)p(i) Update
...

end
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Conjugate gradient method — Construction [3/3]

Conjugate gradient method (continuation)
At each step:
▶ Choice of direction p(ℓ) −→ Part of r(ℓ) that is A−orthogonal with p(ℓ−1)

▶ Choice of step α(ℓ) −→ Value that minimizes J(x(ℓ) + α(ℓ)p(ℓ))

Conjugate gradient method

x(0) ∈ Rn

r(0) = b−Ax(0)

p(0) = r(0)

for ℓ = 0, 1, . . . do

α(ℓ) =
(
r(ℓ),p(ℓ)

)/(
Ap(ℓ),p(ℓ)

)
Comput. of step

x(ℓ+1) = x(ℓ) + α(ℓ)p(ℓ) = x(0) +
∑ℓ

i=0 α
(i)p(i) Update

r(ℓ+1) = r(ℓ) − α(ℓ)Ap(ℓ) = b−Ax(ℓ+1) Comput. of residual

β(ℓ) = −
(
Ar(ℓ+1),p(ℓ)

)/(
Ap(ℓ),p(ℓ)

)
p(ℓ+1) = r(ℓ+1) + β(ℓ)p(ℓ) Comput. of direction

if
∥∥r(ℓ+1)

∥∥ ≤ ε
∥∥r(0)∥∥ then break

end
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Conjugate gradient method — Discussion

Theoretical aspects
▶ Method for symmetric pos. def. (SDP) and Hermitian pos. def. (HPD) matrices
▶ All the directions are A−orthogonal.
▶ By construction, convergence with maximum n iterations! (if ∞ accuracy)
▶ The error e(ℓ) = x− x(ℓ) verifies√(

Ae(ℓ), e(ℓ)
)

≤
(√

κ− 1
√
κ+ 1

)ℓ √(
Ae(0), e(0)

)
with the condition number κ =

∥∥A∥∥ ∥∥A−1
∥∥.

Because A is SPD: κ = λmax/λmin. The max/min eigenvalues influence the
convergence rate. When κ is close to 1, convergence is fast.

Algorithmic aspects
▶ Linear algebraic operations (BLAS 1 and 2) ⇒ Easy for parallel computing
▶ Computation of scalar products and norms ⇒ Collective communications

Best method for systems with SPD matrices!
Extensions for general matrices?
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Krylov spaces — Motivation

The conjugate gradient method relies on adding an update term to the current solution:

x(ℓ+1) = x(ℓ) + α(ℓ)p(ℓ),

with the update direction p(ℓ) and the step α(ℓ).
The update term can be rewritten as:

x(ℓ+1) − x(0) =
ℓ∑

i=0

α(i)p(i)

It belongs to the subspace:

span
(
p(0), . . . ,p(ℓ)

)
⊆ Rn

Toward general iterative methods . . .
General iterative methods for more general non-symmetric/non-Hermitian matrices
can be built by considering Krylov subspaces, e.g.

Kℓ(A, r(0)) := span(r(0),Ar(0), . . . ,Aℓ−1r(0)).

These methods rely on 2 steps:
1. Building a basis

{
v(1), . . . ,v(ℓ)

}
for a Krylov subspace

2. Solving a minimization problem to get the update term towards the “best solution”
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Krylov spaces — Definition and properties

Definition – Krylov subspace

The order-ℓ Krylov subspace associated to A ∈ Rn×n and v ∈ Rn, with ℓ < n,
is the linear subspace spanned by the images of v under the first ℓ powers of A,
starting from A0:

Kℓ(A,v) := span(v,Av, . . . ,Aℓ−1v).

Properties

• Kℓ(A,v) ⊆ Kℓ+i(A,v) ⊆ Rn, ∀i ≥ 0

• AKℓ(A,v) ⊆ Kℓ+1(A,v), ∀ℓ
• dim (Kℓ(A,v)) = min(ℓ, min. degree of non-zero poly. P such that P(A)v = 0)

• The sequence
(
Kℓ(A,v)

)
ℓ

is strictly increasing from 1 to ℓmax, then it is constant
starting from ℓmax, where ℓmax := argmaxℓ(dimKℓ(A,v)).

Example

A =

0 1 1

1 4 −2

2 2 −1

 v =

10
0

 Av =

01
2

 A2v =

30
0


K1(A,v) = span(v) K2(A,v) = span(v,Av) K3(A,v) = span(v,Av,A2v)

dim (K1(A,v)) = 1 dim (K2(A,v)) = 2 dim (K3(A,v)) = 2
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Krylov spaces — Analysis of the CG method [1/2]

Recap:

x(ℓ+1) = x(ℓ) + α(ℓ)p(ℓ)

r(ℓ+1) = r(ℓ) − α(ℓ)Ap(ℓ)

p(ℓ+1) = r(ℓ+1) + β(ℓ)p(ℓ)

Property: x(ℓ+1) − x(0) ∈ Kℓ+1

(
A, r(0)

)
Proof

One has: x
(ℓ+1)

= x
(ℓ)

+ α
(ℓ)

p
(ℓ)

= x(0) +
∑ℓ

i=0 α(i)p(i)

Initially, one has: p(0) = r(0) ⇒ p(0) ∈ K1

(
A, r(0)

)
.

At iteration ℓ, one has: p(ℓ+1)
= r

(ℓ+1)
+ β

(ℓ)
p

(ℓ)

= r
(ℓ) − α

(ℓ)
Ap

(ℓ)
+ β

(ℓ)
p

(ℓ)

= r
(0) −

ℓ∑
i=0

α
(i)

Ap
(i)

+ β
(ℓ)

p
(ℓ)

If p(i) ∈ Ki+1

(
A, r(0)

)
for ∀i < ℓ, then p(ℓ+1) ∈ Kℓ+2

(
A, r(0)

)
.

Then: x(ℓ+1) − x(0) =
∑ℓ

i=0 α(i)p(i) ∈ Kℓ+1

(
A, r(0)

)
□
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Krylov spaces — Analysis of the CG method [2/2]

Properties of the CG method (continuation)

Property: x(ℓ) − x(0) ∈ Kℓ

(
A, r(0)

)
Property: x(ℓ) − x(0) = arg min

y∈Kℓ(A,r(0))
J
(
x(0) + y

)

At each iteration ℓ, one has the best solution x(ℓ) in the sense “J is minimum”
such that x(ℓ) − x(0) belongs to the subspace Kℓ

(
A, r(0)

)
.

Unfortunately, the CG method is limited to SPD/HPD matrices.

Toward general iterative methods for general matrices . . .
We seek for a method that gives . . .

x(ℓ) − x(0) = Pℓ−1(A) r(0) where Pℓ−1( · ) is a polynomial of degree ℓ− 1

such that x(ℓ) is the “best solution” with x(ℓ) − x(0) ∈ Kℓ(A, r(0)).

The GMRES (generalized minimal residual) method is a Krylov method based on the
minimization of the residual at each iteration. (There are other Krylov methods.)
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GMRES — Principle

The GMRES (Generalized Minimal Residual) method relies on 2 steps performed at
each iteration ℓ:

1. Building an orthonormal basis
{
v(1), . . . ,v(ℓ)

}
for the Krylov subspace Kℓ(A, r(0))

Kℓ

(
A, r(0)

)
:= span

(
r(0),Ar(0), . . . ,Aℓ−1r(0)

)
= span

(
v(1), . . . ,v(ℓ)

)
With GMRES:

– The basis vectors are built by using Arnoldi iterations.
– Only the additional vector v(ℓ) is computed at iteration ℓ.

2. Solving a minimization problem to get the “best solution”

x(ℓ) − x(0) = arg min
y∈Kℓ(A,r(0))

∥b−A(x(0) + y)∥2

The solution x(ℓ) is such that:
– The update belongs to the Krylov subspace: x(ℓ) − x(0) ∈ Kℓ

(
A, r(0)

)
– The 2-norm of the residual is minimum: ∥r(ℓ)∥2 is minimum

With GMRES:
– Solving this problem is equivalent to solving a least square problem.
– The least square problem can be solved with a QR factorization.
– The QR factorization can be computed rapidly thanks to Givens matrices.
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GMRES — Algorithm

GMRES algorithm (main steps)

x(0) ∈ Rn

r(0) = b−Ax0

v(1) = r(0)
/
∥r(0)∥

for ℓ = 1, 2 . . . do
// Building the orthonormal basis
w(ℓ) = Av(ℓ)

for i = 1, . . . , ℓ do
w(ℓ) = w(ℓ) − (w(ℓ),v(i))v(i)

end
If ∥w(ℓ)∥2 = 0 → Stop.

v(ℓ+1) = w(ℓ)
/
∥w(ℓ)∥2

// Solving the minimization problem

z(ℓ) = arg minz∈Rℓ+1

∥∥b−AV(ℓ)z
∥∥
2

x(ℓ) = x(0) +V(ℓ)z(ℓ)

end

V(ℓ) is a ℓ× (ℓ+ 1) matrix which the columns are the basis vectors
{
v(i)

}
i=1...ℓ+1

.
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GMRES — Discussion

Theoretical aspects
▶ Method for general nonsingular matrices
▶ By construction, convergence with maximum n iterations. (with ∞ accuracy)
▶ If less iterations are required, procedure stopped during the construction of the

basis. → Breakdown

Algorithmic aspects
▶ The computational cost increases O(ℓ2) at each iteration.

• Storage of an additional basis vector and larger matrices
• Orthogonalization by an additional basis vector
• Solution of a larger minimization problem

To reduce the cost, the process can be restarted by using the current solution as
initial solution. → Restarted GMRES

▶ The algorithm is easy to parallelize.
• Basic linear algebra operations (BLAS 1 and 2) ⇒ Easy for parallel

computing
• Computation of scalar product and norms ⇒ Collective communications

Standard approach for nonsymmetric matrices. Widely used!
Need to limit the number of iterations ⇒ Preconditioning . . .
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Summary

▶ Stationary methods
(
Mx(k+1) = Nx(k) + b

)
• Jacobi and Gauss-Seidel (G.-S.) methods
• Improvements: “relaxation” (JOR and SOR) and “by block” approaches
• Algorithmic aspects:

– Matrix-vector products and linear combinations
– Parallelism easy for Jacobi, a bit more complicated for G.-S.
– Finite difference problem → red/black approach for G.-S.

▶ Unstationary methods
(
x(k+1) = x(k) + α(k)p(k)

)
• Steepest descent and Conjuguate Gradient (CG) methods
• If A SDP: link with quadratic optimisation, conv. in max. n iterations
• Algorithmic aspects: matrix-vector prod., lin. comb., scalar products

▶ Krylov methods
(
x(k) = x(0) + V(k)z(k)

)
which are unstationary methods

• GMRES
• For nonsingular A: conv. in max. n iterations
• Algorithmic aspects: iterations of increasing cost, parallelism is easy



Resources
▶ Numerical Linear Algebra

L.N. Trefethen, D. Bau III (1997), SIAM
▶ Iterative Methods for Sparse Linear Systems, 2nd edition

Y. Saad (2003), SIAM
▶ Méthodes Numériques : Algorithmes, analyse et applications

A. Quarteroni, R. Sacco, F. Saleri (2007), Springer
▶ Calcul scientifique parallèle

F. Magoulès et F.-X. Roux (2017), Dunod
▶ Calcul scientifique parallèle

P. Ciarlet et E. Jamelot, polycopié de cours
▶ M. H. Gutknecht. “A Brief Introduction to Krylov Space Methods for Solving Linear

Systems”, Proc. of the Int. Symp. on Front. of Comput. Sci. (2005) [Preprint]

http://www.sam.math.ethz.ch/~mhg/pub/biksm.pdf

