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Algebraic systems resulting from finite element discretizations ...

Problems with more complicated algorithmic structures
Writing/implementing these algorithms requires graph manipulation
Parallel implementation more difficult

Problem considered for this session
Let | an open bounded domain Q C R? with a sufficiently regular boundary 99
data f € L?(Q) and g € L?(09)

—Au+u=f inQ

Find HY(Q h that
ind u € H-($2) such tha { Do =g onOQ

After discretization with finite elements ...

Find x € RN such that

with A € RVNXN and f ¢ RV,

How can we improve the parallel implementation of this problem
by using the (sparse) structure of A ?



Algebraic systems resulting from finite element discretizations
Recap on finite elements
Sequential implementation

Parallel implementation



Recap on finite elements — Formulation

Exact differential formulation (DF)

. —Au+u=f inQ
Find w € H*(£2) such that
8nu‘3g =g onox

T Equivalent formulations

Exact variational formulation (VF)
Find w € H*(2) such that

/Vu~Vde+/ude:/fde+/ gudQ, Yve HY(Q)
Q Q Q o0

U Galerkin approximation:
V—-V,CV

Approximate variational formulation (VF)

Find uy, € V4, such that

/ Vup - Vop, dQ2 +/ upvp dS) = / fop dQ2 +/ gup dY,  Yup € Vj
Q Q Q o0



Recap on finite elements — Approximation space

For simplicity, we consider 2D cases
with polygonal domains.

Mesh 7;,

e Set of cells/triangles Ty, = (T¢)¢=1...L

e Set of vertices/nodes M, = (M;);=1...N
e Setofedges &, = (Ea)a=1...4

hy = circumcircle diameter of T,

e h = maxy hy = mesh step of 7,

Properties

e Q= Ue=1..L Te
o Ty NTym = {o;1 vertex; 1 full edge} —— conformal mesh

o Ty # @ — no flat triangle
Finite element P,
For a given mesh 7, we define:
Vi = {v, € C°(Q) twp|1, € Pi(Ty),£=1...L} CV (byconstruction)

where Py, (T) is the space of polynomials of degree < k.



Recap on finite elements — Theoretical aspects (for information)

Findu € V' such that a(u, v) = b(v), Vv eV
Find u; € Vj, such that a(uh,vh) = b(Uh), Y, € Vi

Exact problem
e Equivalence of formulation: « solution of (DF) < u solution of (VF)
e Well-posedness: by Lax-Milgram Theorem

Approximate problem
o Well-posedness: by Lax-Milgram Theorem
e Convergence of the numerical solution:

Let (7x)n, a regular family of meshes composed of elements P,.
If uw € H*+1(Q) with k& > 1, then there exist constants Cy and Cs such that, Vh,

llu —unll 20y < C1 ¥ ulkyr o

llw = unll g1y < C2 ¥ lulky1,0




Recap on finite elements — Algebraic system

For the sake of simplicity, we consider P; finite elements.

Basis functions for V},
e Lagrange functions (¢;);=1...N: ,

¢i € Vi, ¢ (f)z(M]) = 5ij, Vi, j

Property: supp(¢i) = Ue st a, o1, Tt

e The dimension of V}, is N. —— Number of vertices/nodes in the mesh
e The functions (¢;);—1...n form a basis of V.
e Every solution vy, € V}, is characterized by the values (vy (M;))i=1.. N

N
on(x) = Y vn(M;) ¢i(x), Vx € Q

i=1




Recap on finite elements — Algebraic system

Find u, € V} such that

/ Vup - Vop dQ+/ upvp dS) = / fop dQ —l—/ gup dY,  Yup € Vj
Q Q Q o2

Since V;, = span(é1, ..., ¢nN), it is sufficient to use the basis functions as test functions:

Find u;, € V} such that

/Vuh-v¢¢dﬂ+/uh¢id9:/f¢>id§2+/ 91 dQ, i=1...N
Q Q Q o

The approximate solution can be written as

N
up(x) = ]z::l un(M;) ¢5(x)

Xj

Find (Xj)j:1...N (S RN such that

N



Recap on finite elements — Algebraic system

Find x € RY such that

Aij:/§2v¢j-v¢id9+/ﬂ¢j¢idﬂ (,5=1...N)

with .
L= ; dQ s dQ —1..
! /chb +/6Qg¢ (i

zj = X G=1..

Properties
e A is symmetric positive definite.

Fory € RM\{0} : (Ayly) = SN, SN, v a6, 65) 5
=a (SN, i Sy d0; )
= a(yn,yn) > aallynll®

e A is (very) sparse.

.N)

.N)

(bilinearity of a)

(coercivity of a)

Aij 7 01 supp(¢:) Nsupp(9;) 70 } = A;; # 0if 3¢ such that M;, M; C T,

supp(#i) = Ug sy, M;CT, T,
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Sequential implementation — Building the system

Aij:fQV@-VqsidQ-&—de)jqbidQ (4,j=1,...,N)

Ax =f| with
‘ fi = fiy 60 dQ+ [, 96 dO2 (i=1,...,)

Computation of matrix A

The elements of A can be rewritten as: i
Aij:/ (Vo; - Vi + d;é:) d 52y =%
Q R o
L A 0,
- Z/ (V; - Vi + pji) dT YA
1=1"Te

= 3 [ (Vo Vot o) aT </

2 such that ¥ Te
i M;CT,

For each element Ty, we define three local basis functions (£)3_, such that:
pilr, =7f| (1=1,2,3)

with M; C T, and the corresponding indices LocalToGlobal (¢, I) = i.



Sequential implementation — Building the system

AZ]:fQV(ﬁJV(}SldQ—‘er(}S](ﬁZdQ (i,j:L...,N)

Ax =f| with
fi = [q f6: dQ+ [0 96: dQ (i=1,...,N)

Computation of matrix A
The elements of A can rewritten as:

Ay = [ (90, 96i+ 6,00 0

L
= (Vo - Vi + djpi)dT

= > / (Voj - Vi + ¢jbi) dT
¢ suchthat ¥ ¢
M, M;CT,

. LocalToGlobal(#, I) =1
= vt vrt TZTZ) dT with ‘ T
Z ; ( J 17T | LocalToGlobal(Z, J) = j

¢suchthat ¥ Te
M;,M;CT,

5 A?, with ‘/'\(),/ = / (VT(() . VT,( + T,”,T
£ such that gy
M;,M;CT,

~e

~—
QU
~

The matrix A* € R3*3 is a local element-wise matrix corresponding to element 7.



Assembling of A

Initialization: A = 0;
fore=1,...,Ldo
Computation of local matrix A¢;
for7 =1,2,3do
forJ=1,2,3do
i <+ LocalToGlobal(¥, I);
j < LocalToGlobal (¥, J);
Aj < Aij + Al
end

end
end

Sequential implementation — Building the system

Assembling of £ (volume term)

Initialization: £ = 0;
fore=1,...,Ldo
Computation of local vector £t
for/ =1,2,3do
i < LocalToGlobal(¥, I);
fi < fi + 15
end
end

Parallelization strategy?



Sequential implementation — Iterative solution procedure

Computation of a matrix-vector product y = Az
We would like to compute

N
j=1

where | y; is a resulting quantity associated to node M;
z; is a quantity associated to node M; (e.g. solution, residual, .. .)
A;; # 0 only if there is at least one triangle containing M; and M
i.e.if (M;, M) is an edge € &y,.

Matrix-vector producty = Az

for M; € My, do
for M; € My, such that (M;, M;) € &, do
Yi < yi + Aijzj;
end
end

Parallelization strategy?
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Parallel implementation — Parallelization strategies

Partition by groups of vertices

Process 1

Process 2

Cut

Parallel assembling
not natural

Parallel matrix-vector product
rather natural

Partition by groups of elements

Process 1

Process 2

Interface

Parallel assembling
rather natural

Parallel matrix-vector product
not natural



Parallel implementation — Strategy by groups of vertices

The vertices/nodes are distributed between the differents processes:
P
My, = U M p with My, , "My, o =0ifp#q
p=1
where My, ,, is the group of vertices/nodes corresponding to process p.

Mhp 1

M}hg

cut

Strategy for matrix-vector product y = Az
o Each process p computes the part of y corresponding to nodes My, ,:
Yi = Zj Aiij with ¢ € Mh,p
o Each process p stores the elements of z and y, and the lines of A with indices € My, ,,.
A priori, no duplication of data, but computing y requires communications.

The edges between nodes of M, 1 and M, » indicates the dependencies.
13



Parallel implementation — Strategy by groups of vertices

lllustration in 1D
Configuration with 3 P1 elements and 4 nodes:

1 2 3 4

Mpa={1,2} CUl A, = (3,4}

Matrix-vector product:

Y1 . . 0 O zZ1
Y2 . : . -1 0 F2)
Y3 ol = 23
L ya L0 0 L ] L z |
[y ] (=1 0 077 21 ] - - 0 0 21
. E: 0 P .. .0 P
Y2 _ 2 + 2
Y3 o - - - 23 o~ r1- - 23
L va | LO O 1L 2z | o 0 [ - 7
Computed by process 1 Computed by process 2
vy =Az Yy, = Asz

Computing y2 (on proc 1) requires z1 and z3 (on proc 1) and z3 (on proc p2)

14



Parallel implementation — Strategy by groups of vertices

Parallel algorithms

Parallel assembly of A

On each processp =1,..., P:
Assemble matrix A, corresponding to lines of A with indices i € My, p;

Parallel matrix-vector product y = Az

On each processp =1,..., P:
for ¢ such that My, , " M}, 4 # 0 do
Send values {z;}; ¢ My, st 33, §) € € with j € M;, , 10 process g;
Recv values {z;}; € my, , st 3(i, j) € &, withi € M, ,, ITOM Process gq;
end
fori e My, , do
for j such that (i, j) is an edge do
Yi < Yi + Apij2j;
end

end

Temporary storage, to store nodal values corresponding to neighboring process



Parallel implementation — Strategy by groups of elements

The elements are distributed between the differents processes:

a=|]a,

Cwr

p=1

where Q,, is the group of elements corresponding to process p.
If My, ,, is the set of nodes/vertices of Qp, then My, , " My, , # 0if Qp N Qg # 0.

951

Qo

Interface

Strategy for matrix-vector product y = Az
> Each process p performs the operations corresponding to the elements of .
> Each process p stores elements of z and y and the lines of A corresponding to
vertices/nodes My, , (i.e. both interior and interface nodes).

Duplication of data corresponding to interface nodes



Parallel implementation — Strategy by groups of elements

Illustration in 1D
Configuration with 4 P1 elements and 5 nodes:

Ty T Ts Ty

1 2 4 5
Tha={T1, T} Interface 7, = (7, 7}
Mp=41,2,3} Mo ={3,4,5}
Matrix-vector product:
[y ] [ 0 0 07T 21 ]
Y2 0 0 )
Y3 =10 1 0 23
Ya 0 O Z4
L ys | LO O O 1L z |
[y ] [ 0 0 07T = ] o 0 0 0 O z1
Y2 0o 0 22 0O 0 0 0 O 22
Y3 =10 |- ] 0 O zz |+ 0 O 0 23
Ya 0 0 0 0 0 24 0 0 z4
L Y5 LO O O O O J L 25 J 0o 0 0 |- . z5
Computed by proc. 1 Computed by proc. 2
Y1 = Az Yo = Asz

Vector y,, contains total sums 3 ; A;; z; for the internal nodes and partial sums for the interface nodes. 44



Parallel implementation — Strategy by groups of elements

Parallel algorithms

Parallel assembly of A

On each processp=1,...,P:

Assemble matrix A, corresponding to elements of 7,;

Parallel matrix-vector product y = Az

On each processp=1,...,P:
fori € My, do
for j € M, ,, such that (i, j) € £, do
Yi < Yi + Apijzs;
end
end
for ¢ such that My, , N My, 4 # 0 do
Send/Recv values {y;} for the interface nodes My, , " My, 4;
Accumulate these values to compute the total sums;

end




> Finite element scheme
® Exact/Approximate variational formulation of an elliptic problem
® P, finite elements — Convergence rate: k2 in L2-norm and Al in H'-norm
® Linear system Ax =f :
— A € RVXN js symmetric, positive definite, sparse
— x € RY contains the nodal values of the solution
— N is the number of nodes/vertices
> Implementation
® Main loops:
— Loop over the elements for the matrix assembly
— Loop over the unknowns/nodes/vertices for solving the linear system
® Strategy for parallel implementation:
— Partitionning by groups of nodes
— Partitionning by groups of elements



