Parallel Scientific Computing Course AMS301 - Fall 2023 - Lecture 7

Algebraic systems resulting from finite element discretizations

Axel Modave

Algebraic systems resulting from finite element discretizations ...

Problems with more complicated algorithmic structures
Writing/implementing these algorithms requires graph manipulation
Parallel implementation more difficult

Problem considered for this session

Let an open bounded domain $\Omega \subset \mathbb{R}^{d}$ with a sufficiently regular boundary $\partial \Omega$ data $f \in L^{2}(\Omega)$ and $g \in L^{2}(\partial \Omega)$

$$
\text { Find } u \in H^{1}(\Omega) \text { such that } \quad\left\{\begin{aligned}
-\Delta u+u=f & \text { in } \Omega \\
\partial_{n} u_{\mid \partial \Omega}=g & \text { on } \partial \Omega
\end{aligned}\right.
$$

After discretization with finite elements ...

$$
\text { Find } \mathrm{x} \in \mathbb{R}^{N} \text { such that } \quad \mathbf{A x}=\mathbf{f}
$$

with $\mathbf{A} \in \mathbb{R}^{N \times N}$ and $\mathbf{f} \in \mathbb{R}^{N}$.
How can we improve the parallel implementation of this problem by using the (sparse) structure of A?

Algebraic systems resulting from finite element discretizations
Recap on finite elements
Sequential implementation
Parallel implementation

Recap on finite elements - Formulation

Exact differential formulation (DF)

$$
\text { Find } u \in H^{1}(\Omega) \text { such that } \quad\left\{\begin{aligned}
-\Delta u+u=f & \text { in } \Omega \\
\partial_{n} u_{\mid \partial \Omega}=g & \text { on } \partial \Omega
\end{aligned}\right.
$$

\# Equivalent formulations

Exact variational formulation (VF)

Find $u \in H^{1}(\Omega)$ such that

$$
\int_{\Omega} \nabla u \cdot \nabla v d \Omega+\int_{\Omega} u v d \Omega=\int_{\Omega} f v d \Omega+\int_{\partial \Omega} g v d \Omega, \quad \forall v \in H^{1}(\Omega)
$$

Approximate variational formulation (VF)
Find $u_{h} \in V_{h}$ such that

$$
\int_{\Omega} \nabla u_{h} \cdot \nabla v_{h} d \Omega+\int_{\Omega} u_{h} v_{h} d \Omega=\int_{\Omega} f v_{h} d \Omega+\int_{\partial \Omega} g v_{h} d \Omega, \quad \forall v_{h} \in V_{h}
$$

Recap on finite elements - Approximation space

For simplicity, we consider 2D cases with polygonal domains.

Mesh \mathcal{T}_{h}

- Set of cells/triangles $\mathcal{T}_{h}=\left(T_{\ell}\right)_{\ell=1 \ldots L}$
- Set of vertices/nodes $\mathcal{M}_{h}=\left(M_{i}\right)_{i=1 \ldots N}$
- Set of edges $\mathcal{E}_{h}=\left(E_{a}\right)_{a=1 \ldots A}$
- $h_{\ell}=$ circumcircle diameter of T_{ℓ}
- $h=\max _{\ell} h_{\ell}=$ mesh step of \mathcal{T}_{h}

Properties

- $\bar{\Omega}=\bigcup_{\ell=1 \ldots L} T_{\ell}$
- $T_{\ell} \cap T_{m}=\{\varnothing ; 1$ vertex; 1 full edge $\} \longrightarrow$ conformal mesh
- ${\stackrel{\circ}{T_{\ell}}}_{\ell} \neq \varnothing \longrightarrow$ no flat triangle

Finite element P_{k}
For a given mesh \mathcal{T}_{h}, we define:

$$
V_{h}:=\left\{v_{h} \in C^{0}(\bar{\Omega}):\left.v_{h}\right|_{T_{\ell}} \in P_{k}\left(T_{\ell}\right), \ell=1 \ldots L\right\} \subset V \quad \text { (by construction) }
$$

where $P_{k}(T)$ is the space of polynomials of degree $\leq k$.

Recap on finite elements - Theoretical aspects (for information)

```
Find }u\inV\quad\mathrm{ such that }a(u,v)=b(v),\quad\forallv\in
Find }\mp@subsup{u}{h}{}\in\mp@subsup{V}{h}{}\mathrm{ such that a(uh, v
```


Exact problem

- Equivalence of formulation: u solution of (DF) $\Leftrightarrow u$ solution of (VF)
- Well-posedness: by Lax-Milgram Theorem

Approximate problem

- Well-posedness: by Lax-Milgram Theorem
- Convergence of the numerical solution:

Let $\left(\mathcal{T}_{h}\right)_{h}$, a regular family of meshes composed of elements P_{k}.
If $u \in H^{k+1}(\Omega)$ with $k \geq 1$, then there exist constants C_{1} and C_{2} such that, $\forall h$,

$$
\begin{aligned}
\left\|u-u_{h}\right\|_{L^{2}(\Omega)} & \leq C_{1} h^{k+1}|u|_{k+1, \Omega} \\
\left\|u-u_{h}\right\|_{H^{1}(\Omega)} & \leq C_{2} h^{k}|u|_{k+1, \Omega}
\end{aligned}
$$

Recap on finite elements - Algebraic system [1/3]

For the sake of simplicity, we consider P_{1} finite elements.

Basis functions for V_{h}

- Lagrange functions $\left(\phi_{i}\right)_{i=1 \ldots N}$:

$$
\phi_{i} \in V_{h}: \phi_{i}\left(M_{j}\right)=\delta_{i j}, \forall i, j
$$

Property: $\operatorname{supp}\left(\phi_{i}\right)=\bigcup_{\ell \text { s.t. } M_{i} \subset T_{\ell}} T_{\ell}$

- The dimension of V_{h} is $N . \longrightarrow$ Number of vertices/nodes in the mesh
- The functions $\left(\phi_{i}\right)_{i=1 \ldots N}$ form a basis of V_{h}.
- Every solution $v_{h} \in V_{h}$ is characterized by the values $\left(v_{h}\left(M_{i}\right)\right)_{i=1 \ldots N}$:

$$
v_{h}(\mathbf{x})=\sum_{i=1}^{N} v_{h}\left(M_{i}\right) \phi_{i}(\mathbf{x}), \quad \forall \mathbf{x} \in \Omega
$$

Recap on finite elements - Algebraic system [2/3]

Find $u_{h} \in V_{h}$ such that

$$
\int_{\Omega} \nabla u_{h} \cdot \nabla v_{h} d \Omega+\int_{\Omega} u_{h} v_{h} d \Omega=\int_{\Omega} f v_{h} d \Omega+\int_{\partial \Omega} g v_{h} d \Omega, \quad \forall v_{h} \in V_{h}
$$

Since $V_{h}=\operatorname{span}\left(\phi_{1}, \ldots, \phi_{N}\right)$, it is sufficient to use the basis functions as test functions:
Find $u_{h} \in V_{h}$ such that

$$
\int_{\Omega} \nabla u_{h} \cdot \nabla \phi_{i} d \Omega+\int_{\Omega} u_{h} \phi_{i} d \Omega=\int_{\Omega} f \phi_{i} d \Omega+\int_{\partial \Omega} g \phi_{i} d \Omega, \quad i=1 \ldots N
$$

The approximate solution can be written as

$$
u_{h}(\mathbf{x})=\sum_{j=1}^{N} \underbrace{u_{h}\left(M_{j}\right)}_{X_{j}} \phi_{j}(\mathbf{x})
$$

Find $\left(X_{j}\right)_{j=1 \ldots N} \in \mathbb{R}^{N}$ such that

$$
\sum_{j=1}^{N}\left[\int_{\Omega} \nabla \phi_{j} \cdot \nabla \phi_{i} d \Omega+\int_{\Omega} \phi_{j} \phi_{i} d \Omega\right] X_{j}=\int_{\Omega} f \phi_{i} d \Omega+\int_{\partial \Omega} g \phi_{i} d \Omega, \quad i=1 \ldots N
$$

Recap on finite elements - Algebraic system $[3 / 3]$

Find $\mathbf{x} \in \mathbb{R}^{N}$ such that $\quad \mathbf{A x}=\mathbf{f}$

$$
\text { with } \left\lvert\, \begin{aligned}
A_{i j} & =\int_{\Omega} \nabla \phi_{j} \cdot \nabla \phi_{i} d \Omega+\int_{\Omega} \phi_{j} \phi_{i} d \Omega & & (i, j=1 \ldots N) \\
f_{i} & =\int_{\Omega} f \phi_{i} d \Omega+\int_{\partial \Omega} g \phi_{i} d \Omega & & (i=1 \ldots N) \\
x_{j} & =X_{j} & & (j=1 \ldots N)
\end{aligned}\right.
$$

Properties

- \mathbf{A} is symmetric positive definite.

$$
\text { For } \begin{aligned}
\mathbf{y} \in \mathbb{R}^{N} \backslash\{0\}:(\mathbf{A y} \mid \mathbf{y}) & =\sum_{i=1}^{N} \sum_{j=1}^{N} y_{i} a\left(\phi_{i}, \phi_{j}\right) y_{j} & & \\
& =a\left(\sum_{i=1}^{N} \phi_{i} y_{i}, \sum_{j=1}^{N} \phi_{j} y_{j}\right) & & \text { (bilinearity of a) } \\
& =a\left(y_{h}, y_{h}\right) \geq \alpha_{a}\left\|y_{h}\right\|^{2} & & \text { (coercivity of a) }
\end{aligned}
$$

- \mathbf{A} is (very) sparse.

$$
\left.\begin{array}{l}
A_{i j} \neq 0 \text { if } \operatorname{supp}\left(\phi_{i}\right) \cap \operatorname{supp}\left(\phi_{j}\right) \neq \emptyset \\
\operatorname{supp}\left(\phi_{i}\right)=\bigcup_{\ell \text { s.t. } M_{i} \subset T_{\ell}} T_{\ell}
\end{array}\right\} \Rightarrow A_{i j} \neq 0 \text { if } \exists \ell \text { such that } M_{i}, M_{j} \subset T_{\ell}
$$

Algebraic systems resulting from finite element discretizations
Recap on finite elements
Sequential implementation
Parallel implementation

Sequential implementation - Building the system $[1 / 3]$

$$
\begin{array}{|l|lll}
\mathbf{A x}=\mathbf{f}
\end{array} \text { with } \left\lvert\, \begin{array}{cl}
A_{i j}=\int_{\Omega} \nabla \phi_{j} \cdot \nabla \phi_{i} d \Omega+\int_{\Omega} \phi_{j} \phi_{i} d \Omega & \\
f_{i}=\int_{\Omega} f \phi_{i} d \Omega+\int_{\partial \Omega} g \phi_{i} d \Omega & \\
\hline
\end{array}\right.
$$

Computation of matrix A

The elements of \mathbf{A} can be rewritten as:

$$
\begin{aligned}
A_{i j} & =\int_{\Omega}\left(\nabla \phi_{j} \cdot \nabla \phi_{i}+\phi_{j} \phi_{i}\right) d \Omega \\
& =\sum_{\ell=1}^{L} \int_{\dot{T}_{\ell}}\left(\nabla \phi_{j} \cdot \nabla \phi_{i}+\phi_{j} \phi_{i}\right) d T \\
& =\sum_{\substack{\ell \text { such that } \\
M_{i}, M_{j} \subset T_{\ell}}} \int_{\dot{T_{\ell}}}\left(\nabla \phi_{j} \cdot \nabla \phi_{i}+\phi_{j} \phi_{i}\right) d T
\end{aligned}
$$

For each element T_{ℓ}, we define three local basis functions $\left(\tau_{I}^{\ell}\right)_{I=1}^{3}$ such that:

$$
\left.\phi_{i}\right|_{T_{\ell}}=\tau_{I}^{\ell} \quad(I=1,2,3)
$$

with $M_{i} \subset T_{\ell}$ and the corresponding indices LocalToGlobal $(\ell, I)=i$.

Sequential implementation - Building the system [2/3]

$$
\begin{array}{|l|ll}
\mathbf{A x}=\mathbf{f}
\end{array} \text { with } \left\lvert\, \begin{array}{cl}
A_{i j}=\int_{\Omega} \nabla \phi_{j} \cdot \nabla \phi_{i} d \Omega+\int_{\Omega} \phi_{j} \phi_{i} d \Omega & \\
f_{i}=\int_{\Omega} f \phi_{i} d \Omega+\int_{\partial \Omega} g \phi_{i} d \Omega & \\
& (i=1, \ldots, N)
\end{array}\right.
$$

Computation of matrix A

The elements of A can rewritten as:

$$
\begin{aligned}
& A_{i j}=\int_{\Omega}\left(\nabla \phi_{j} \cdot \nabla \phi_{i}+\phi_{j} \phi_{i}\right) d \Omega \\
&=\sum_{\ell=1}^{L} \int_{\dot{T_{\ell}}}\left(\nabla \phi_{j} \cdot \nabla \phi_{i}+\phi_{j} \phi_{i}\right) d T \\
&=\sum_{\substack{\ell \text { such that } \\
M_{i}, M_{j} \subset T_{\ell}}} \int_{\stackrel{\circ}{T_{\ell}}}\left(\nabla \phi_{j} \cdot \nabla \phi_{i}+\phi_{j} \phi_{i}\right) d T \\
&=\sum_{\substack{\ell \text { such that } \\
M_{i}, M_{j} \subset T_{\ell}}} \int_{\stackrel{\circ}{T_{\ell}}}\left(\nabla \tau_{J}^{\ell} \cdot \nabla \tau_{I}^{\ell}+\tau_{J}^{\ell} \tau_{I}^{\ell}\right) d T \quad \text { with } \begin{array}{l}
\text { LocalToGlobal }(\ell, I)=i \\
\text { LocalToGlobal }(\ell, J)=j \\
\end{array} \\
&=\sum_{\substack{\ell \text { such that } \\
M_{i}, M_{j} \subset T_{\ell}}} A_{I J}^{\ell} \quad \text { with } A_{I J}^{\ell}=\int_{\check{T}_{\ell}}\left(\nabla \tau_{J}^{\ell} \cdot \nabla \tau_{I}^{\ell}+\tau_{J}^{\ell} \tau_{I}^{\ell}\right) d T
\end{aligned}
$$

The matrix $\mathbf{A}^{\ell} \in \mathbb{R}^{3 \times 3}$ is a local element-wise matrix corresponding to element T_{ℓ}.

Sequential implementation - Building the system [3/3]

```
Assembling of A
Initialization: \(\mathbf{A}=0\);
for \(\ell=1, \ldots, L\) do
    Computation of local matrix \(\mathbf{A}^{\ell}\);
        for \(I=1,2,3\) do
            for \(J=1,2,3\) do
            \(i \leftarrow \operatorname{LocalToGlobal(~} \ell, I)\);
            \(j \leftarrow\) LocalToGlobal \((\ell, J)\);
            \(A_{i j} \leftarrow A_{i j}+A_{I J}^{\ell} ;\)
            end
    end
end
```


Assembling of \mathbf{f} (volume term)

Initialization: $\mathbf{f}=0$;
for $\ell=1, \ldots, L$ do
Computation of local vector \mathbf{f}^{ℓ};
for $I=1,2,3$ do
$i \leftarrow \operatorname{LocalToGlobal}(\ell, I)$;
$f_{i} \leftarrow f_{i}+f_{I}^{\ell} ;$
end
end

Sequential implementation - Iterative solution procedure

Computation of a matrix-vector product $\mathbf{y}=\mathbf{A z}$
We would like to compute

$$
y_{i}=\sum_{j=1}^{N} A_{i j} z_{j} \quad(i=1, \ldots, N)
$$

where y_{i} is a resulting quantity associated to node M_{i} z_{j} is a quantity associated to node M_{j} (e.g. solution, residual, ...)
$A_{i j} \neq 0$ only if there is at least one triangle containing M_{i} and M_{j}
i.e. if $\left(M_{i}, M_{j}\right)$ is an edge $\in \mathcal{E}_{h}$.

```
    Matrix-vector product \(\mathbf{y}=\mathbf{A z}\)
for \(M_{i} \in \mathcal{M}_{h}\) do
        for \(M_{j} \in \mathcal{M}_{h}\) such that \(\left(M_{i}, M_{j}\right) \in \mathcal{E}_{h}\) do
            \(y_{i} \leftarrow y_{i}+A_{i j} z_{j} ;\)
        end
    end
```

Algebraic systems resulting from finite element discretizations
Recap on finite elements
Sequential implementation
Parallel implementation

Parallel implementation - Parallelization strategies

Partition by groups of vertices

Parallel assembling not natural

Parallel matrix-vector product rather natural

Partition by groups of elements

Parallel assembling rather natural

Parallel matrix-vector product not natural

Parallel implementation - Strategy by groups of vertices [1/3]

The vertices/nodes are distributed between the differents processes:

$$
\mathcal{M}_{h}=\bigcup_{p=1}^{P} \mathcal{M}_{h, p} \quad \text { with } \mathcal{M}_{h, p} \cap \mathcal{M}_{h, q}=\emptyset \text { if } p \neq q
$$

where $\mathcal{M}_{h, p}$ is the group of vertices/nodes corresponding to process p.

Strategy for matrix-vector product $\mathbf{y}=\mathbf{A z}$

- Each process p computes the part of \mathbf{y} corresponding to nodes $\mathcal{M}_{h, p}$:

$$
y_{i}=\sum_{j} A_{i j} z_{j} \text { with } i \in \mathcal{M}_{h, p}
$$

- Each process p stores the elements of \mathbf{z} and \mathbf{y}, and the lines of \mathbf{A} with indices $\in \mathcal{M}_{h, p}$.

> A priori, no duplication of data, but computing y requires communications.
> The edges between nodes of $\mathcal{M}_{h, 1}$ and $\mathcal{M}_{h, 2}$ indicates the dependencies.

Parallel implementation - Strategy by groups of vertices [2/3]

Illustration in 1D

Configuration with 3 P1 elements and 4 nodes:

Matrix-vector product:

Computing y_{2} (on proc 1) requires z_{1} and z_{2} (on proc 1) and z_{3} (on proc p_{2})

Parallel implementation - Strategy by groups of vertices

Parallel algorithms

Parallel assembly of A

On each process $p=1, \ldots, P$:
Assemble matrix \mathbf{A}_{p} corresponding to lines of \mathbf{A} with indices $i \in \mathcal{M}_{h, p}$;

Parallel matrix-vector product $\mathbf{y}=\mathbf{A z}$

On each process $p=1, \ldots, P$:
for q such that $\mathcal{M}_{h, p} \cap \mathcal{M}_{h, q} \neq \emptyset$ do

Recv values $\left\{z_{j}\right\}_{j \in \mathcal{M}_{h, q}}$ s.t. $\exists(i, j) \in \mathcal{E}_{h}$ with $i \in \mathcal{M}_{h, p}$ from process q;
end
for $i \in \mathcal{M}_{h, p}$ do
for j such that (i, j) is an edge do $y_{i} \leftarrow y_{i}+A_{p, i j} z_{j} ;$
end
end

Parallel implementation - Strategy by groups of elements

The elements are distributed between the differents processes:

$$
\bar{\Omega}=\bigcup_{p=1}^{P} \bar{\Omega}_{p}
$$

where $\bar{\Omega}_{p}$ is the group of elements corresponding to process p. If $\mathcal{M}_{h, p}$ is the set of nodes/vertices of Ω_{p}, then $\mathcal{M}_{h, p} \cap \mathcal{M}_{h, q} \neq \emptyset$ if $\bar{\Omega}_{p} \cap \bar{\Omega}_{q} \neq \emptyset$.

Interface
Strategy for matrix-vector product $\mathbf{y}=\mathbf{A z}$

- Each process p performs the operations corresponding to the elements of $\bar{\Omega}_{p}$.
- Each process p stores elements of \mathbf{z} and \mathbf{y} and the lines of \mathbf{A} corresponding to vertices/nodes $\mathcal{M}_{h, p}$ (i.e. both interior and interface nodes).

Parallel implementation - Strategy by groups of elements

Illustration in 1D

Configuration with 4 P1 elements and 5 nodes:

$$
\mathcal{T}_{h, 1}=\left\{T_{1}, T_{2}\right\} \quad \text { Interface } \quad \mathcal{T}_{h, 2}=\left\{T_{3}, T_{4}\right\}
$$

$$
\mathcal{M}_{h, 1}=\{1,2,3\} \quad \mathcal{M}_{h, 2}=\{3,4,5\}
$$

Matrix-vector product:

$$
\begin{aligned}
& {\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}
\end{array}\right]=\frac{\left[\begin{array}{ccccc}
\cdot \cdot & \cdot & 0 & 0 & 0 \\
\cdot & \cdot \cdot & \cdot & 0 & 0 \\
0 & \cdot & \cdot & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4} \\
z_{5}
\end{array}\right]}{\text { Computed by proc. } 1}+\frac{\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & \cdot \cdot & \cdot & 0 \\
0 & 0 & \cdot & \cdot & \cdot \\
0 & 0 & 0 & \cdot & \cdot
\end{array}\right]\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3} \\
z_{4} \\
z_{5}
\end{array}\right]}{\text { Computed by proc. } 2}} \\
& \mathbf{y}_{1}=\mathbf{A}_{1} \mathbf{z} \\
& \mathbf{y}_{2}=\mathbf{A}_{2} \mathbf{z}
\end{aligned}
$$

Vector \mathbf{y}_{p} contains total sums $\sum_{j} A_{i j} z_{j}$ for the internal nodes and partial sums for the interface nodes.

Parallel implementation - Strategy by groups of elements

Parallel algorithms

Parallel assembly of A

On each process $p=1, \ldots, P$:
Assemble matrix \mathbf{A}_{p} corresponding to elements of \mathcal{T}_{p};

Parallel matrix-vector product $\mathbf{y}=\mathbf{A z}$

On each process $p=1, \ldots, P$:
for $i \in \mathcal{M}_{h, p}$ do
for $j \in \mathcal{M}_{h, p}$ such that $(i, j) \in \mathcal{E}_{h}$ do

$$
y_{i} \leftarrow y_{i}+A_{p, i j} z_{j}
$$

end
end
for q such that $\mathcal{M}_{h, p} \cap \mathcal{M}_{h, q} \neq \emptyset$ do
Send/Recv values $\left\{y_{i}\right\}$ for the interface nodes $\mathcal{M}_{h, p} \cap \mathcal{M}_{h, q}$;
Accumulate these values to compute the total sums;
end

Summary

- Finite element scheme
- Exact/Approximate variational formulation of an elliptic problem
- P_{1} finite elements - Convergence rate: h^{2} in L^{2}-norm and h^{1} in H^{1}-norm
- Linear system $\mathbf{A x}=\mathbf{f}$:
- $\mathbf{A} \in \mathbb{R}^{N \times N}$ is symmetric, positive definite, sparse
$-\mathbf{x} \in \mathbb{R}^{N}$ contains the nodal values of the solution
- N is the number of nodes/vertices
- Implementation
- Main loops:
- Loop over the elements for the matrix assembly
- Loop over the unknowns/nodes/vertices for solving the linear system
- Strategy for parallel implementation:
- Partitionning by groups of nodes
- Partitionning by groups of elements

