
0

.

Parallel Scientific Computing
Course AMS301 — Fall 2023 — Lecture 7

Algebraic systems resulting from finite element discretizations

Axel Modave

Algebraic systems resulting from finite element discretizations . . .

Problems with more complicated algorithmic structures
Writing/implementing these algorithms requires graph manipulation
Parallel implementation more difficult

Problem considered for this session

Let an open bounded domain Ω ⊂ Rd with a sufficiently regular boundary ∂Ω

data f ∈ L2(Ω) and g ∈ L2(∂Ω)

Find u ∈ H1(Ω) such that

{
−∆u+ u = f in Ω

∂nu|∂Ω = g on ∂Ω

After discretization with finite elements . . .

Find x ∈ RN such that Ax = f

with A ∈ RN×N and f ∈ RN .

How can we improve the parallel implementation of this problem
by using the (sparse) structure of A?

1

Algebraic systems resulting from finite element discretizations
Recap on finite elements

Sequential implementation

Parallel implementation

Recap on finite elements — Formulation

Exact differential formulation (DF)

Find u ∈ H1(Ω) such that

{
−∆u+ u = f in Ω

∂nu|∂Ω = g on ∂Ω

⇕ Equivalent formulations

Exact variational formulation (VF)

Find u ∈ H1(Ω) such that∫
Ω
∇u · ∇v dΩ+

∫
Ω
uv dΩ =

∫
Ω
fv dΩ+

∫
∂Ω

gv dΩ, ∀v ∈ H1(Ω)

⇓ Galerkin approximation:

V −→ Vh ⊂ V

Approximate variational formulation (VF)

Find uh ∈ Vh such that∫
Ω
∇uh · ∇vh dΩ+

∫
Ω
uhvh dΩ =

∫
Ω
fvh dΩ+

∫
∂Ω

gvh dΩ, ∀vh ∈ Vh

2

Recap on finite elements — Approximation space

For simplicity, we consider 2D cases
with polygonal domains.

Mesh Th
• Set of cells/triangles Th = (Tℓ)ℓ=1...L

• Set of vertices/nodesMh = (Mi)i=1...N

• Set of edges Eh = (Ea)a=1...A

• hℓ = circumcircle diameter of Tℓ

• h = maxℓ hℓ = mesh step of Th

Properties

• Ω =
⋃

ℓ=1...L Tℓ

• Tℓ ∩ Tm = {∅; 1 vertex; 1 full edge} −→ conformal mesh

• T̊ℓ ̸= ∅ −→ no flat triangle

Finite element Pk

For a given mesh Th, we define:

Vh :=
{
vh ∈ C0(Ω) : vh|Tℓ

∈ Pk(Tℓ), ℓ = 1 . . . L
}
⊂ V (by construction)

where Pk(T) is the space of polynomials of degree ≤ k.

3

Recap on finite elements — Theoretical aspects (for information)

Find u ∈ V such that a(u, v) = b(v), ∀v ∈ V

Find uh ∈ Vh such that a(uh, vh) = b(vh), ∀vh ∈ Vh

Exact problem
• Equivalence of formulation: u solution of (DF)⇔ u solution of (VF)
• Well-posedness: by Lax-Milgram Theorem

Approximate problem
• Well-posedness: by Lax-Milgram Theorem
• Convergence of the numerical solution:

Let (Th)h, a regular family of meshes composed of elements Pk.
If u ∈ Hk+1(Ω) with k ≥ 1, then there exist constants C1 and C2 such that, ∀h,

∥u− uh∥L2(Ω) ≤ C1 hk+1|u|k+1,Ω

∥u− uh∥H1(Ω) ≤ C2 hk|u|k+1,Ω

4

Recap on finite elements — Algebraic system [1/3]

For the sake of simplicity, we consider P1 finite elements.

Basis functions for Vh

• Lagrange functions (ϕi)i=1...N :

ϕi ∈ Vh : ϕi(Mj) = δij , ∀i, j

Property: supp(ϕi) =
⋃

ℓ s.t. Mi⊂Tℓ
Tℓ

• The dimension of Vh is N . −→ Number of vertices/nodes in the mesh

• The functions (ϕi)i=1...N form a basis of Vh.

• Every solution vh ∈ Vh is characterized by the values (vh(Mi))i=1...N :

vh(x) =
N∑
i=1

vh(Mi) ϕi(x), ∀x ∈ Ω

5

Recap on finite elements — Algebraic system [2/3]

Find uh ∈ Vh such that∫
Ω
∇uh · ∇vh dΩ+

∫
Ω
uhvh dΩ =

∫
Ω
fvh dΩ+

∫
∂Ω

gvh dΩ, ∀vh ∈ Vh

Since Vh = span(ϕ1, . . . , ϕN), it is sufficient to use the basis functions as test functions:∣∣∣∣∣∣
Find uh ∈ Vh such that∫

Ω
∇uh · ∇ϕi dΩ+

∫
Ω
uhϕi dΩ =

∫
Ω
fϕi dΩ+

∫
∂Ω

gϕi dΩ, i = 1 . . . N

The approximate solution can be written as

uh(x) =
N∑

j=1

uh(Mj)︸ ︷︷ ︸
Xj

ϕj(x)

Find (Xj)j=1...N ∈ RN such that

N∑
j=1

[∫
Ω
∇ϕj · ∇ϕi dΩ+

∫
Ω
ϕjϕi dΩ

]
Xj =

∫
Ω
fϕi dΩ+

∫
∂Ω

gϕi dΩ, i = 1 . . . N

6

Recap on finite elements — Algebraic system [3/3]

Find x ∈ RN such that Ax = f

with

∣∣∣∣∣∣∣∣∣∣∣

Aij =

∫
Ω
∇ϕj · ∇ϕi dΩ+

∫
Ω
ϕjϕi dΩ (i, j = 1 . . . N)

fi =

∫
Ω
fϕi dΩ+

∫
∂Ω

gϕi dΩ (i = 1 . . . N)

xj = Xj (j = 1 . . . N)

Properties
• A is symmetric positive definite.

For y ∈ RN\{0} : (Ay|y) =
∑N

i=1

∑N
j=1 yi a(ϕi, ϕj) yj

= a
(∑N

i=1 ϕiyi,
∑N

j=1 ϕjyj

)
(bilinearity of a)

= a(yh, yh) ≥ αa∥yh∥2 (coercivity of a)

• A is (very) sparse.

Aij ̸= 0 if supp(ϕi) ∩ supp(ϕj) ̸= ∅
supp(ϕi) =

⋃
ℓ s.t. Mi⊂Tℓ

Tℓ

}
⇒ Aij ̸= 0 if ∃ℓ such that Mi,Mj ⊂ Tℓ

7

Algebraic systems resulting from finite element discretizations
Recap on finite elements

Sequential implementation

Parallel implementation

Sequential implementation — Building the system [1/3]

Ax = f with

∣∣∣∣∣ Aij =
∫
Ω∇ϕj · ∇ϕi dΩ+

∫
Ω ϕjϕi dΩ (i, j = 1, . . . , N)

fi =
∫
Ω fϕi dΩ+

∫
∂Ω gϕi dΩ (i = 1, . . . , N)

Computation of matrix A

The elements of A can be rewritten as:

Aij =

∫
Ω
(∇ϕj · ∇ϕi + ϕjϕi) dΩ

=
L∑

ℓ=1

∫
T̊ℓ

(∇ϕj · ∇ϕi + ϕjϕi) dT

=
∑

ℓ such that
Mi,Mj⊂Tℓ

∫
T̊ℓ

(∇ϕj · ∇ϕi + ϕjϕi) dT

For each element Tℓ, we define three local basis functions (τℓI)
3
I=1 such that:

ϕi|Tℓ
= τℓI (I = 1, 2, 3)

with Mi ⊂ Tℓ and the corresponding indices LocalToGlobal(ℓ, I) = i.

8

Sequential implementation — Building the system [2/3]

Ax = f with

∣∣∣∣∣ Aij =
∫
Ω∇ϕj · ∇ϕi dΩ+

∫
Ω ϕjϕi dΩ (i, j = 1, . . . , N)

fi =
∫
Ω fϕi dΩ+

∫
∂Ω gϕi dΩ (i = 1, . . . , N)

Computation of matrix A

The elements of A can rewritten as:

Aij =

∫
Ω
(∇ϕj · ∇ϕi + ϕjϕi) dΩ

=
L∑

ℓ=1

∫
T̊ℓ

(∇ϕj · ∇ϕi + ϕjϕi) dT

=
∑

ℓ such that
Mi,Mj⊂Tℓ

∫
T̊ℓ

(∇ϕj · ∇ϕi + ϕjϕi) dT

=
∑

ℓ such that
Mi,Mj⊂Tℓ

∫
T̊ℓ

(
∇τℓJ · ∇τ

ℓ
I + τℓJτ

ℓ
I

)
dT with

LocalToGlobal(ℓ, I) = i

LocalToGlobal(ℓ, J) = j

=
∑

ℓ such that
Mi,Mj⊂Tℓ

Aℓ
IJ with Aℓ

IJ =

∫
T̊ℓ

(
∇τℓJ · ∇τ

ℓ
I + τℓJτ

ℓ
I

)
dT

The matrix Aℓ ∈ R3×3 is a local element-wise matrix corresponding to element Tℓ.
9

Sequential implementation — Building the system [3/3]

Assembling of A

Initialization: A = 0;
for ℓ = 1, . . . , L do

Computation of local matrix Aℓ;
for I = 1, 2, 3 do

for J = 1, 2, 3 do
i← LocalToGlobal(ℓ, I);
j ← LocalToGlobal(ℓ, J);
Aij ← Aij +Aℓ

IJ ;

end

end

end

Assembling of f (volume term)

Initialization: f = 0;
for ℓ = 1, . . . , L do

Computation of local vector f ℓ;
for I = 1, 2, 3 do

i← LocalToGlobal(ℓ, I);
fi ← fi + fℓ

I ;

end

end

Parallelization strategy?

10

Sequential implementation — Iterative solution procedure

Computation of a matrix-vector product y = Az

We would like to compute

yi =
N∑

j=1

Aijzj (i = 1, . . . , N)

where yi is a resulting quantity associated to node Mi

zj is a quantity associated to node Mj (e.g. solution, residual, . . .)
Aij ̸= 0 only if there is at least one triangle containing Mi and Mj

i.e. if (Mi,Mj) is an edge ∈ Eh.

Matrix-vector product y = Az

for Mi ∈Mh do
for Mj ∈Mh such that (Mi,Mj) ∈ Eh do

yi ← yi +Aijzj ;
end

end

Parallelization strategy?

11

Algebraic systems resulting from finite element discretizations
Recap on finite elements

Sequential implementation

Parallel implementation

Parallel implementation — Parallelization strategies

Partition by groups of vertices Partition by groups of elements

Process 1

Process 2

Cut

Process 1

Process 2

Interface

Parallel assembling Parallel assembling
not natural rather natural

Parallel matrix-vector product Parallel matrix-vector product
rather natural not natural

12

Parallel implementation — Strategy by groups of vertices [1/3]

The vertices/nodes are distributed between the differents processes:

Mh =
P⋃

p=1

Mh,p withMh,p ∩Mh,q = ∅ if p ̸= q

whereMh,p is the group of vertices/nodes corresponding to process p.

Mh,1

Mh,2

cut

Strategy for matrix-vector product y = Az

• Each process p computes the part of y corresponding to nodesMh,p:

yi =
∑

j Aijzj with i ∈Mh,p

• Each process p stores the elements of z and y, and the lines of A with indices ∈Mh,p.

A priori, no duplication of data, but computing y requires communications.
The edges between nodes ofMh,1 andMh,2 indicates the dependencies.

13

Parallel implementation — Strategy by groups of vertices [2/3]

Illustration in 1D
Configuration with 3 P1 elements and 4 nodes:

• • • •
1 2 3 4

cutMh,1 = {1, 2} Mh,2 = {3, 4}

Matrix-vector product:
y1

y2

y3

y4

 =


· · 0 0

· · · 0

0 · · ·
0 0 · ·




z1

z2

z3

z4

+


· · 0 0

· · · 0

0 · · ·
0 0 · ·




z1

z2

z3

z4




y1

y2

y3

y4

 =


· · 0 0

· · · 0

0 · · ·
0 0 · ·




z1

z2

z3

z4

+


· · 0 0

· · · 0

0 · · ·
0 0 · ·




z1

z2

z3

z4


Computed by process 1 Computed by process 2

y1 = A1z y2 = A2z

Computing y2 (on proc 1) requires z1 and z2 (on proc 1) and z3 (on proc p2)

14

Parallel implementation — Strategy by groups of vertices [3/3]

Parallel algorithms

Parallel assembly of A

On each process p = 1, . . . , P :
Assemble matrix Ap corresponding to lines of A with indices i ∈Mh,p;

Parallel matrix-vector product y = Az

On each process p = 1, . . . , P :
for q such thatMh,p ∩Mh,q ̸= ∅ do

Send values {zi}i ∈ Mh,p s.t. ∃(i, j) ∈ Eh with j ∈ Mh,q
to process q;

Recv values {zj}j ∈ Mh,q s.t. ∃(i, j) ∈ Eh with i ∈ Mh,p
from process q;

end
for i ∈Mh,p do

for j such that (i, j) is an edge do
yi ← yi +Ap,ijzj ;

end

end

Temporary storage, to store nodal values corresponding to neighboring process

15

Parallel implementation — Strategy by groups of elements [1/3]

The elements are distributed between the differents processes:

Ω =
P⋃

p=1

Ωp

where Ωp is the group of elements corresponding to process p.

IfMh,p is the set of nodes/vertices of Ωp, thenMh,p ∩Mh,q ̸= ∅ if Ωp ∩ Ωq ̸= ∅.

Ω1

Ω2

Interface

Strategy for matrix-vector product y = Az

▶ Each process p performs the operations corresponding to the elements of Ωp.
▶ Each process p stores elements of z and y and the lines of A corresponding to

vertices/nodesMh,p (i.e. both interior and interface nodes).

Duplication of data corresponding to interface nodes
16

Parallel implementation — Strategy by groups of elements [2/3]

Illustration in 1D
Configuration with 4 P1 elements and 5 nodes:

• • • • •
1 2 4 5

T1 T2 T3 T4

InterfaceTh,1 = {T1, T2}
Mh,1 = {1, 2, 3}

Th,2 = {T3, T4}
Mh,2 = {3, 4, 5}

Matrix-vector product:
y1

y2

y3

y4

y5

 =


· · 0 0 0

· · · 0 0

0 · · · 0

0 0 · · ·
0 0 0 · ·




z1

z2

z3

z4

z5

 +


0 0 0 0 0

0 0 0 0 0

0 0 · · 0

0 0 · · ·
0 0 0 · ·




z1

z2

z3

z4

z5




y1

y2

y3

y4

y5

 =


· · 0 0 0

· · · 0 0

0 · · 0 0

0 0 0 0 0

0 0 0 0 0




z1

z2

z3

z4

z5

 +


0 0 0 0 0

0 0 0 0 0

0 0 · · 0

0 0 · · ·
0 0 0 · ·




z1

z2

z3

z4

z5


Computed by proc. 1 Computed by proc. 2

y1 = A1z y2 = A2z

Vector yp contains total sums
∑

j Aijzj for the internal nodes and partial sums for the interface nodes. 17

Parallel implementation — Strategy by groups of elements [3/3]

Parallel algorithms

Parallel assembly of A

On each process p = 1, . . . , P :
Assemble matrix Ap corresponding to elements of Tp;

Parallel matrix-vector product y = Az

On each process p = 1, . . . , P :
for i ∈Mh,p do

for j ∈Mh,p such that (i, j) ∈ Eh do
yi ← yi +Ap,ijzj ;

end

end
for q such thatMh,p ∩Mh,q ̸= ∅ do

Send/Recv values {yi} for the interface nodesMh,p ∩Mh,q ;
Accumulate these values to compute the total sums;

end

18

Summary

▶ Finite element scheme
• Exact/Approximate variational formulation of an elliptic problem
• P1 finite elements — Convergence rate: h2 in L2-norm and h1 in H1-norm
• Linear system Ax = f :

– A ∈ RN×N is symmetric, positive definite, sparse
– x ∈ RN contains the nodal values of the solution
– N is the number of nodes/vertices

▶ Implementation
• Main loops:

– Loop over the elements for the matrix assembly
– Loop over the unknowns/nodes/vertices for solving the linear system

• Strategy for parallel implementation:
– Partitionning by groups of nodes
– Partitionning by groups of elements

